

PyBacktrack documentation

A tool for reconstructing paleobathymetry on oceanic and continental crust.

PyBacktrack is a Python package that backtracks the paleo-water depth of ocean drill sites through time
by combining a model of tectonic subsidence with decompaction of the site stratigraphic lithologies.
PyBacktrack can also include the effects of mantle-convection driven dynamic topography on paleo-water depth,
as well as sea-level variations. PyBacktrack provides a model of tectonic subsidence on both oceanic and continental crust.
Ocean crust subsidence is based on a user-selected lithospheric age-depth model and the present-day unloaded basement depth.
Continental crust subsidence is based on syn-rift and post-rift subsidence that is modelled using the total sediment thickness at the site
and the timing of the transition from rifting to thermal subsidence. At drill sites that did not penetrate to basement,
the age-coded stratigraphy is supplemented with a synthetic stratigraphic section that represents the undrilled section,
whose thickness is estimated using a global sediment thickness map. This is essential for estimating the decompacted thickness
of the total sedimentary section, and thus bathymetry, through time.
At drill sites on stretched continental crust where the paleo-water depth is known from benthic fossil assemblages,
tectonic subsidence can be computed via backstripping. The workflow is similar to backtracking, but paleo-water depths and
their uncertainties need to be supplied as part of the input.
In addition to individual 1D drill sites, all submerged present-day crust (assigned a single lithology) can be backtracked and reconstructed to
generate 2D paleobathymetry grids through time.

Reference

The following paper covers the theory and algorithms of pyBacktrack:

	Müller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018,
PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust [https://doi.org/10.1029/2017GC007313],
Geochemistry, Geophysics, Geosystems, 19, 1898-1909, doi: 10.1029/2017GC007313

Note

The paper can be downloaded either at Geochemistry, Geophysics, Geosystems [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GC007313] or
ResearchGate [https://www.researchgate.net/publication/325045269_PyBacktrack_10_A_Tool_for_Reconstructing_Paleobathymetry_on_Oceanic_and_Continental_Crust].

Contents

	Getting Started
	Installation
	Install pybacktrack

	Install the examples

	A Backtracking Example
	Use a built-in module script

	Import into your own script

	Overview
	Running pyBacktrack

	Running the scripts built into pyBacktrack
	backtrack

	backstrip

	paleo_bathymetry

	age_to_depth

	stratigraphic_depth_to_age

	interpolate

	Running your own script that imports pyBacktrack
	backtrack

	backstrip

	paleo_bathymetry

	age_to_depth

	stratigraphic_depth_to_age

	interpolate

	Stratigraphy
	Drill site
	Backtracking versus backstripping sites

	Drill site file format

	Base sediment layer

	Geohistory analysis

	Lithology Definitions
	Bundled lithology definitions

	Lithology file format

	Specifying lithology definitions

	Conflicting lithology definitions

	Backtrack
	Overview

	Running backtrack
	Example

	Backtrack output
	Amended drill site output

	Decompacted output

	Sea level variation

	Oceanic and continental tectonic subsidence
	Oceanic versus continental drill sites

	Present-day tectonic subsidence

	Oceanic subsidence

	Continental subsidence

	Dynamic topography

	Geohistory analysis
	Continental subsidence

	Oceanic subsidence

	Backstrip
	Overview

	Running backstrip
	Example

	Backstrip output
	Amended drill site output

	Decompacted output

	Sea level variation

	Geohistory analysis

	Paleobathymetry
	Overview

	Running paleobathymetry
	Example

	Paleobathymetry output

	Paleobathymetry gridding procedure

	Builtin rift gridding procedure

	Reference
	Backtracking
	Summary

	Detail

	Backstripping
	Summary

	Detail

	Paleobathymetry
	Summary

	Detail

	Creating lithologies
	Summary

	Detail

	Decompacting well sites
	Reading and writing well files

	Compacted well

	Decompacted well

	Converting oceanic age to depth
	Summary

	Detail

	Continental rifting
	Summary

	Detail

	Dynamic topography
	Summary

	Detail

	Average sea level variations
	Summary

	Detail

	Converting stratigraphic depth to age
	Summary

	Detail

	Utilities
	Summary

	Detail

	Constants
	Bundle data

	Backtracking

	Backstripping

	Paleobathymetry

	Lithology

	Oceanic subsidence

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

	Installation

	Install pybacktrack

	Using conda

	Using pip

	Requirements

	Install pybacktrack

	Using Docker

	Install the examples

	Install supplementary scripts

	A Backtracking Example

	Use a built-in module script

	Import into your own script

Installation

Install pybacktrack

You can install pybacktrack using:

	conda, or

	pip, or

	Docker.

We recommend using conda since it installs all the dependencies of pybacktrack
(using pip currently only installs some of the dependencies, the rest must be install manually).
Using Docker is also more straightforward than pip since all the dependencies have been pre-installed.

Using conda

We recommend installing pyBacktrack using conda [https://docs.conda.io/projects/conda/en/latest/user-guide/index.html].

To install the latest stable version of pyBacktrack type the following in a terminal or command window
(on macOS and Ubuntu this is a Terminal window, and on Windows you’ll need to open an Anaconda prompt from the Start menu):

conda install -c conda-forge pybacktrack

We recommend installing pyBacktrack into a new conda environment.
For example, the following creates and activates a Python 3.10 environment named pybacktrack_py310 containing pyBacktrack and all its dependencies:

conda create -n pybacktrack_py310 -c conda-forge python=3.10 pybacktrack
conda activate pybacktrack_py310

You can then use pyBacktrack. For example, to see the pyBacktrack version:

python -c "import pybacktrack; print(pybacktrack.__version__)"

Using pip

Python packages installed using pip [https://pypi.org/project/pip/] will typically also have their dependency packages automatically installed also.
However pybacktrack requires manual installation of some of its dependencies.

	Requirements

	Install Python, Pip, GMT and pyGPlates on Ubuntu

	Install Python, Pip, GMT and pyGPlates on Mac using Macports

	Install pybacktrack

Requirements

PyBacktrack depends on:

	NumPy [http://www.numpy.org/]

	SciPy [https://www.scipy.org/]

	Generic Mapping Tools (GMT) [http://gmt.soest.hawaii.edu/] (>=5.0.0)

	PyGPlates [http://www.gplates.org/]

NumPy and SciPy are automatically installed by pip when pybacktrack is installed, however GMT (version 5 or above) and pyGPlates need to be manually installed.

GMT is called via the command-line (shell) and so just needs to be in the PATH in order for pyBacktrack to find it.
Also ensure that version 5 or above (supports NetCDF version 4) is installed since the bundled grid files in pyBacktrack are in NetCDF4 format.

PyGPlates is not currently installable as a package and so needs to be in the python path (sys.path or PYTHONPATH).
Installation instructions are available here [http://www.gplates.org/docs/pygplates/index.html].

PyGPlates supports Python 3 (in addition to Python 2.7) so you can now use pyBacktrack with either.
The Macports install example below shows one approach to selecting the default Python using sudo port select.
Another approach is using Python virtual environments where each environment has its own python, pip and installed packages.
However, currently pyGPlates does not yet work in virtual environments (at least on Mac systems).

Install Python, Pip, GMT and pyGPlates on Ubuntu

This is an example demonstrating how to install GMT and pyGPlates on Ubuntu 18.04 (Bionic).

Note

The main difference for other Ubuntu versions will be the pyGPlates install package
(you’ll need to select the package appropriate for your Ubuntu version).

First install GMT 5:

sudo apt install gmt

Then install Python 3 (and Pip):

sudo apt update

sudo apt install python3 python3-pip
sudo pip3 install --upgrade pip

Then download the pyGPlates Python 3 debian package pygplates_0.36.0_py36_ubuntu-18.04-amd64.deb [https://www.earthbyte.org/download-pygplates-0-36/],
and install it:

sudo apt install ./pygplates_0.36.0_py36_ubuntu-18.04-amd64.deb

Then add the installed location of pyGPlates to the PYTHONPATH environment variable:

export PYTHONPATH=$PYTHONPATH:/usr/lib

Install Python, Pip, GMT and pyGPlates on Mac using Macports

This is an example demonstrating how to install GMT and pyGPlates on a Mac system using Macports [https://www.macports.org/].

First install GMT 5:

sudo port install gmt5

Note

You will likely need to add /opt/local/lib/gmt5/bin/ to your PATH environment variable,
for example in your ~/.bashrc, ~/.bash_profile or ~/.zprofile file so that PATH
is set each time you open a new terminal window.
After doing this, typing gmt should find GMT and show some help options.

Then install Python 3 (and Pip):

sudo port install python38
sudo port install py38-pip

Set your default python to Python 3.8:

sudo port select --set python python38
sudo port select --set pip pip38

Note

If you already have python referencing Python 2 then you can instead use python3 to reference Python 3:

sudo port select --set python3 python38
sudo port select --set pip3 pip38

…but this will require using python3 on the command-line to run
pybacktrack (instead of just python).

Then download a pyGPlates Mac zip file, such as pygplates_0.36.0_py38_Darwin-x86_64.zip [https://www.earthbyte.org/download-pygplates-0-36/] for Python 3.8 on an Intel Mac,
and extract it to your home directory.

Then add the unzipped location of pyGPlates to the PYTHONPATH environment variable, such as:

export PYTHONPATH=~/pygplates_0.36.0_py38_Darwin-x86_64:$PYTHONPATH

Note

The above line can be added to your ~/.bashrc, ~/.bash_profile or ~/.zprofile file
so that PYTHONPATH is set each time you open a new terminal window.

Install pybacktrack

To install the latest stable version, run:

python -m pip install pybacktrack

Warning

On Mac systems, when using Macports [https://www.macports.org/], it might be better to install to the
local user install directory with python -m pip install --user pybacktrack to avoid confusing Macports
(which installs to the system install directory).

And on linux systems, if you have admin privileges, you can install to the system install directory with sudo python -m pip install pybacktrack.

Note

We generally recommend using python -m pip install pybacktrack instead of pip install pybacktrack to ensure pybacktrack is installed
into the python you are actually using. For example, when using Conda Python it might be that python executes the Conda Python interpreter
but pip installs into the system Python (eg, because the base Conda environment is not activated).

If you already have pybacktrack installed and would like to upgrade to the latest version then use the --upgrade flag:

python -m pip install --upgrade pybacktrack

To install the latest development version (requires Git on local system), run:

python -m pip install "git+https://github.com/EarthByte/pyBacktrack.git#egg=pybacktrack"

Note

You may need to update your Git if you receive an error ending with tlsv1 alert protocol version.

This is apparently due to an update on GitHub [https://blog.github.com/2018-02-23-weak-cryptographic-standards-removed].

…or download the pyBacktrack source code [https://github.com/EarthByte/pyBacktrack], extract to a local directory and run:

python -m pip install <path-to-local-directory>

Note

Installing pyBacktrack will automatically install the NumPy and SciPy requirements.
However, as mentioned in requirements, GMT and pyGPlates still need to be manually installed.

Using Docker

This method of running pybacktrack relies on Docker [https://www.docker.com/], so before installing
the pybacktrack docker image, ensure you have installed Docker [https://www.docker.com/].

Note

On Windows platforms you can install Docker Desktop for Windows [https://docs.docker.com/docker-for-windows/install/].
Note that Docker Toolbox [https://docs.docker.com/toolbox/overview/] has been deprecated (and now Docker Desktop for Windows is recommended).

A similar situation applies on Mac platforms where you can install
Docker Desktop for Mac [https://docs.docker.com/docker-for-mac/install/] (with Docker Toolbox being deprecated).

Once Docker is installed, open a terminal (command-line interface).

Note

For Docker Desktop for Windows [https://docs.docker.com/docker-for-windows/install/] and
Docker Desktop for Mac [https://docs.docker.com/docker-for-mac/install/] this a regular command-line terminal.

Also on Linux systems this a regular command-line terminal.

To install the pybacktrack docker image, type:

docker pull earthbyte/pybacktrack

To run the docker image:

docker run -it --rm -p 18888:8888 -w /usr/src/pybacktrack earthbyte/pybacktrack

This should bring up a command prompt inside the running docker container.

The current working directory should be /usr/src/pybacktrack/.

It should have a pybacktrack_examples sub-directory containing test data.

Note

On Linux systems you may have to use sudo when running docker commands. For example:

sudo docker pull earthbyte/pybacktrack
sudo docker run -it --rm -p 18888:8888 -w /usr/src/pybacktrack earthbyte/pybacktrack

From the current working directory you can run the backtracking example below,
or any other examples in this documentation. For example, you could run:

python3 -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

If you wish to run the example notebooks [https://github.com/EarthByte/pyBacktrack/tree/master/pybacktrack/notebooks]
then there is a notebook.sh script to start a Jupyter notebook server in the running docker container:

./notebook.sh

Then you can start a web browser on your local machine and type the following in the URL field:

http://localhost:18888/tree

This will display the current working directory in the docker container.

In the web browser, navigate to pybacktrack_examples and then notebooks.

Then click on a notebook (such as backtrack.ipynb [https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/backtrack.ipynb]).

You should be able to run the notebook, or modify it and then run it.

Install the examples

Before running the example below, or any other examples, you’ll also need to install the example data (from the pybacktrack package itself).
This assumes you’ve already installed pybacktrack.

The following command installs the examples (example data and notebooks) to a new sub-directory of your current working directory called pybacktrack_examples:

python -c "import pybacktrack; pybacktrack.install_examples()"

Note

The current working directory is whatever directory you are in when you run the above command.

Note

Alternatively you can choose a different sub-directory by providing an argument to the install_examples() function above.

For example, python -c "import pybacktrack; pybacktrack.install_examples('pybacktrack/examples')"
creates a new sub-directory of your current working directory called pybacktrack/examples.

However the example below assumes the default directory (pybacktrack_examples).

Install supplementary scripts

You can optionally install supplementary scripts. These are not necessary for running the pybacktrack module.
They are various pre/post processing, conversion and test scripts that have only been included for reference (for those interested).

The following command installs the supplementary scripts to a new sub-directory of your current working directory called pybacktrack_supplementary:

python -c "import pybacktrack; pybacktrack.install_supplementary()"

Note

Like the examples you can specify your own sub-directory.

A Backtracking Example

Once installed, pybacktrack is available to:

	run built-in scripts (inside pybacktrack), or

	import pybacktrack into your own script.

The following example is used to demonstrate both approaches. It backtracks an ocean drill site and saves the output to a text file by:

	reading the ocean drill site file pybacktrack_examples/example_data/ODP-114-699-Lithology.txt,

Note

This file is part of the example data.

However if you have your own ocean drill site file then you can substitute it in the example below if you want.

	backtracking it using:

	the M2 dynamic topography model, and

	the Haq87_SealevelCurve_Longterm sea-level model,

	writing the amended drill site to ODP-114-699_backtrack_amended.txt, and

	writing the following columns to ODP-114-699_backtrack_decompacted.txt:

	age

	compacted_depth

	compacted_thickness

	decompacted_thickness

	decompacted_density

	decompacted_sediment_rate

	decompacted_depth

	dynamic_topography

	water_depth

	tectonic_subsidence

	lithology

Use a built-in module script

Since there is a backtrack module inside pybacktrack that can be run as a script,
we can invoke it on the command-line using python -m pybacktrack.backtrack_cli followed by command line options that are specific to that module.
This is the easiest way to run backtracking.

To see its command-line options, run:

python -m pybacktrack.backtrack_cli --help

The backtracking example can now be demonstrated by running the script as:

python -m pybacktrack.backtrack_cli \
 -w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt \
 -d age compacted_depth compacted_thickness decompacted_thickness decompacted_density decompacted_sediment_rate decompacted_depth dynamic_topography water_depth tectonic_subsidence lithology \
 -ym M2 \
 -slm Haq87_SealevelCurve_Longterm \
 -o ODP-114-699_backtrack_amended.txt \
 -- \
 ODP-114-699_backtrack_decompacted.txt

Import into your own script

An alternative to running a built-in script is to write your own script (using a text editor) that imports pybacktrack and
calls its functions. You might do this if you want to combine pyBacktrack functionality with other research functionality into a single script.

The following Python code does the same as the built-in script by calling the
pybacktrack.backtrack_and_write_well() function:

import pybacktrack

Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt'
amended_well_output_filename = 'ODP-114-699_backtrack_amended.txt'
decompacted_output_filename = 'ODP-114-699_backtrack_decompacted.txt'

Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backtrack_and_write_well(
 decompacted_output_filename,
 input_well_filename,
 dynamic_topography_model='M2',
 sea_level_model='Haq87_SealevelCurve_Longterm',
 # The columns in decompacted output file...
 decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,
 pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY,
 pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE,
 pybacktrack.BACKTRACK_COLUMN_LITHOLOGY],
 # Might be an extra stratigraphic well layer added from well bottom to ocean basement...
 ammended_well_output_filename=amended_well_output_filename)

If you save the above code to a file called my_backtrack_script.py then you can run it as:

python my_backtrack_script.py

Overview

This document gives a brief overview of the scripts inside the pybacktrack package.

	Running pyBacktrack

	Running the scripts built into pyBacktrack

	backtrack

	backstrip

	paleo_bathymetry

	age_to_depth

	stratigraphic_depth_to_age

	interpolate

	Running your own script that imports pyBacktrack

	backtrack

	backstrip

	paleo_bathymetry

	age_to_depth

	stratigraphic_depth_to_age

	interpolate

Running pyBacktrack

Once installed, the pybacktrack Python package is available to:

	run built-in scripts (inside pybacktrack), or

	import pybacktrack into your own script.

It is generally easier to run the built-in scripts since you only need to specify parameters on the command-line.

However you may need to create your own script if you want to combine pybacktrack functionality with
other research functionality. In this case it is generally better to import pybacktrack, along with the
other modules, into your own script. This also gives a finer granularity of control compared to the command-line.

The following two sections give an overview of both approaches.

Note

The input files used in the examples below (except interpolate) are available in the example data.

Please ensure you have installed the example data before running any of these examples.

Running the scripts built into pyBacktrack

PyBacktrack is a Python package containing modules. And each module can be run as a script using
python -m pybacktrack.<module>_cli followed by command line options that are specific to that module.
For example, the backtrack module can be run as python -m pybacktrack.backtrack_cli ..., or the backstrip module
can be run as python -m pybacktrack.backstrip_cli ..., with ... replaced by command-line options.

The following sections give an introduction to each module.

Note

In each module you can use the --help option to see all available command-line options for that specific module.
For example, python -m pybacktrack.backtrack_cli --help describes all options available to the backtrack module.

backtrack

The backtrack module is used to find paleo water depths from a tectonic subsidence model
(such as an age-to-depth curve in ocean basins, or rifting near continental passive margins) and sediment decompaction over time.

This example takes an ocean drill site as input and outputs a file containing a backtracked water depth for each age in the drill site:

python -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

…where the -w option specifies the input drill site file pybacktrack_examples/example_data/ODP-114-699-Lithology.txt, the -d option specifies
the desired columns (age and water_depth) of the output file, and ODP-114-699_backtrack_decompacted.txt is the output file.

There are other command-line options available to the backtrack module (use the --help option to list them) but they all have default values and
hence only need to be specified if the default does not suit.

See also

Backtrack

backstrip

The backstrip module is used to find tectonic subsidence (typically due to lithospheric stretching) from paleo water depths and sediment decompaction over time.

This example takes a passive margin site as input and outputs a file containing a backstripped tectonic subsidence for each age in the drill site:

python -m pybacktrack.backstrip_cli -w pybacktrack_examples/example_data/sunrise_lithology.txt -l primary extended -d age average_tectonic_subsidence -- sunrise_backstrip_decompacted.txt

…where the -w option specifies the input drill site file pybacktrack_examples/example_data/sunrise_lithology.txt, the -l option specifies the
lithology definitions, the -d option specifies the desired columns (age and average_tectonic_subsidence) of the output file,
and sunrise_backstrip_decompacted.txt is the output file.

Note

It is necessary to specify the bundled primary and extended lithology definitions, with -l primary extended, because the input drill site
references lithologies in both lithology definition files. See Bundled lithology definitions. This is unlike the
backtracking example above that only references the primary lithologies, and hence does not need
to specify lithology definitions because primary is the default (when -l is not specified).

Note

average_tectonic_subsidence is an average of the minimum and maximum tectonic subsidences, that are in turn a result
of the minimum and maximum water depths specified in the drill site file.

There are other command-line options available to the backstrip module (use the --help option to list them) but they all have default values and
hence only need to be specified if the default does not suit.

See also

Backstrip

paleo_bathymetry

The paleo_bathymetry module is used to generate paleo bathymetry grids by reconstructing and backtracking present-day sediment-covered crust through time.

This example generates paleobathymetry grids at 12 minute resolution from 0Ma to 240Ma in 1Myr increments using the M7 dynamic topography model
and the GDH1 oceanic subsidence model:

python -m pybacktrack.paleo_bathymetry_cli -gm 12 -ym M7 -m GDH1 --use_all_cpus -- 240 paleo_bathymetry_12m_M7_GDH1

…where the -gm option specifies the grid spacing (in minutes), the -ym specifies the dynamic topography model, the -m option specifies the
oceanic subsidence model, the --use_all_cpus option uses all CPUs (it also accepts an optional number of CPUs) and
the generated paleobathymetry grid files are named paleo_bathymetry_12m_M7_GDH1_<time>.nc.

There are other command-line options available to the paleo_bathymetry module (use the --help option to list them) but they all have default values and
hence only need to be specified if the default does not suit.

See also

Paleobathymetry

age_to_depth

The age_to_depth module is used to convert ocean floor age to ocean basement depth (in ocean basins).

This example takes an input file containing a column of ages, and outputs a file containing two columns (age and depth):

python -m pybacktrack.age_to_depth_cli -- pybacktrack_examples/example_data/ages.txt ages_and_depths.txt

Here the input file pybacktrack_examples/example_data/ages.txt contains ages in the first (and only) column.
If they had been in another column, for example if there were other unused columns, then we would need to specify the age column with the -a option.

The output file ages_and_depths.txt contains ages in the first column and depths in the second column.
To reverse this order you can use the -r option.

There are three built-in age-to-depth ocean models:

	RHCW18 - Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere system [https://doi.org/10.1016/j.pepi.2020.106559]

	CROSBY_2007 - Crosby, A.G., (2007) Aspects of the relationship between topography and gravity on the Earth and Moon, PhD thesis

	GDH1 - Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with lithospheric age [https://doi.org/10.1038/359123a0]

Here the conversion was performed using the default model RHCW18 since the -m command-line option was not specified.
However you can specify the alternate CROSBY_2007 model using -m CROSBY_2007 (or GDH1 using -m GDH1).

Note

The default age-to-depth model was updated in pyBacktrack version 1.4. It is now RHCW18. Previously it was GDH1.

Or you can use your own age-to-depth model by specifying a file containing an age column and a depth column
followed by two integers representing the age and depth column indices. For example, if you have your own age-to-depth file
called age-depth-model.txt where age is in the first column and depth is in the second column then you can specify this
using -w age-depth-model.txt 0 1.

Note

Use python -m pybacktrack.age_to_depth_cli --help to see a description of all command-line options.

stratigraphic_depth_to_age

The stratigraphic_depth_to_age module is used to convert stratigraphic depths to ages using a depth-to-age model.

Here the depth-to-age model is specified as a file containing a column of ages and a column of depths that forms a piecewise linear function of age with depth
(a model where age is a function of depth age=function(depth)).
Then another file specifies the input stratigraphic depths that you wish to convert to ages.
Finally a third file is created containing the input depths and output ages, where each interpolated output age is a result of querying the piecewise linear function using the input depth:

python -m pybacktrack.stratigraphic_depth_to_age_cli -m pybacktrack_examples/example_data/Site1089B_age_depth.txt -- pybacktrack_examples/example_data/Site1089B_strat_depth.txt Site1089B_age_strat_depth.txt

Here the age=function(depth) model is specified with the -m option, where the pybacktrack_examples/example_data/Site1089B_age_depth.txt file
contains a column of ages and a column of depths. By default, age is the first column and depth the second but you can optionally choose any column by specifying
two integers representing the age and depth column indices in the -m option. For example, you can change -m pybacktrack_examples/example_data/Site1089B_age_depth.txt
to -m pybacktrack_examples/example_data/Site1089B_age_depth.txt 1 0 to select the second column (index 1) for age and the first column (index 0) for depth.

The input stratigraphic depths are in pybacktrack_examples/example_data/Site1089B_strat_depth.txt and must be in the first column.
Any text after the depth value in a row (eg, lithologies) is copied to the output file. Also any metadata at the top of the file is copied to the output file.

The interpolated ages and associated depths are written to the output file Site1089B_age_strat_depth.txt.
The first column contains (interpolated) age and the second column contains depth. To reverse this order you can use the -r option.

Note

The output file Site1089B_age_strat_depth.txt does not contain rows for depths that are outside the depth range of the model Site1089B_age_depth.txt.
This is the default behaviour. You can change this using the -m option which, in addition to specifying optional age and depth column indices, allows you to
optionally specify how to handle out-of-bounds depth values with exclude (to exclude rows outside depth range), clamp (to use boundary age values) or
extrapolate (to extrapolate age from boundary).

Note

Use python -m pybacktrack.stratigraphic_depth_to_age_cli --help to see a description of all command-line options.

interpolate

The interpolate module can perform linear interpolation of any piecewise linear function y=f(x).
As such it can be used for any type of data.

Here the y=f(x) model is specified as a file containing a column of x values and a column of y values that forms a piecewise linear function of y with x.
Then another file specifies the input x values. Finally a third file is created containing the input x values and the output y values,
where each interpolated output y value is a result of querying the piecewise linear function using an input x value:

python -m pybacktrack.util.interpolate_cli -cx 1 -cy 0 -c function_y_of_x.txt -- input_x_values.txt output_x_y_values.txt

Note

These files, specifically function_y_of_x.txt and input_x_values.txt, do not exist in the example data.
They are just placeholders for your own data that you would like to interpolate.

Here the y=f(x) model is specified with the -c, -cx and -cy options.
The -c option specifies the file function_y_of_x.txt containing a column of y values followed by a column of x values.
The -cx and -cy options specify the x and y columns of the model function y=f(x).
These default to 0 and 1 respectively. However if y happens to be in the first column (0) and x in the second column (1)
then you can swap the default order of column indices using -cx 1 -cy 0.

The input x values are in input_x_values.txt in the first column (by default).
If they had been in another column, for example if there were other unused columns, then we would need to specify the x column with the -ix option.

The output (interpolated) y values (and associated x values) are written to the output file output_x_y_values.txt.
The first column contains the x values and the second column contains the (interpolated) y values. To reverse this order you can use the -r option.

Note

Use python -m pybacktrack.util.interpolate_cli --help to see a description of all command-line options.

Running your own script that imports pyBacktrack

An alternative to running the built-in scripts
is to write your own script (using a text editor) that imports pybacktrack and calls its functions.
You might do this if you want to combine pyBacktrack functionality with other research functionality into a single script.

The following shows Python source code that is equivalent to the above examples running built-in scripts.

If you save any of the code examples below to a file called my_script.py then you can run that example as:

python my_script.py

backtrack

The following Python source code (using these functions):

import pybacktrack

pybacktrack.backtrack_and_write_well(
 'ODP-114-699_backtrack_decompacted.txt',
 'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt',
 decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,
 pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH])

…is equivalent to running the backtrack script example:

python -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

Note

The backtrack module is covered in more detail here.

backstrip

The following Python source code (using these functions):

import pybacktrack

pybacktrack.backstrip_and_write_well(
 'sunrise_backstrip_decompacted.txt',
 'pybacktrack_examples/example_data/sunrise_lithology.txt',
 lithology_filenames=[pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME,
 pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME],
 decompacted_columns=[pybacktrack.BACKSTRIP_COLUMN_AGE,
 pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE])

…is equivalent to running the backstrip script example:

python -m pybacktrack.backstrip_cli -w pybacktrack_examples/example_data/sunrise_lithology.txt -l primary extended -d age average_tectonic_subsidence -- sunrise_backstrip_decompacted.txt

Note

The backstrip module is covered in more detail here.

paleo_bathymetry

The following Python source code (using these functions):

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(
 'paleo_bathymetry_12m_M7_GDH1',
 0.2, # degrees (same as 12 minutes)
 240,
 dynamic_topography_model='M7',
 ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_MODEL_GDH1,
 use_all_cpus=True) # can also be an integer (the number of CPUs to use)

…is equivalent to running the paleobathymetry script example:

python -m pybacktrack.paleo_bathymetry_cli -gm 12 -ym M7 -m GDH1 --use_all_cpus -- 240 paleo_bathymetry_12m_M7_GDH1

Note

The paleo_bathymetry module is covered in more detail here.

age_to_depth

The following Python source code (using these functions):

import pybacktrack

pybacktrack.convert_age_to_depth_files(
 'pybacktrack_examples/example_data/ages.txt',
 'ages_and_depths.txt')

…is equivalent to running the age-to-depth script example:

python -m pybacktrack.age_to_depth_cli -- pybacktrack_examples/example_data/ages.txt ages_and_depths.txt

stratigraphic_depth_to_age

The following Python source code (using these functions):

import pybacktrack

Read the age=f(depth) function, where 'x' is depth and 'y' is age (in the returned function y=f(x)).
age_column_index = 0 # age is in the first column
depth_column_index = 1 # depth is in the second column
This determines the age values for depth values outside the depth range of the depth-to-model model.
It can be 'exclude' to exclude age values outside range, or 'clamp' to use boundary age values, or 'extrapolate' to extrapolate age from boundary.
Here we use 'exclude' (instead of the default 'clamp') to avoid getting the same age value for different depth values (outside depth range).
out_of_bounds = 'exclude'
Ignore the x (depth) and y (age) values read from file by using '_'.
depth_to_age_model, _, _ = pybacktrack.read_interpolate_function('pybacktrack_examples/example_data/Site1089B_age_depth.txt', depth_column_index, age_column_index, out_of_bounds)

Convert depth values in input file to age and depth values in output file.
pybacktrack.convert_stratigraphic_depth_to_age_files(
 'pybacktrack_examples/example_data/Site1089B_strat_depth.txt',
 'Site1089B_age_strat_depth.txt',
 depth_to_age_model)

…is equivalent to running the stratigraphic depth-to-age script example:

python -m pybacktrack.stratigraphic_depth_to_age_cli -m pybacktrack_examples/example_data/Site1089B_age_depth.txt -- pybacktrack_examples/example_data/Site1089B_strat_depth.txt Site1089B_age_strat_depth.txt

interpolate

The following Python source code (using these functions):

import pybacktrack

Read the y=f(x) function from a 2-column file.
Ignore the x and y values read from file by using '_'.
function_y_of_x, _, _ = pybacktrack.read_interpolate_function('function_y_of_x.txt', 1, 0)

Convert x values in a 1-column input file to x and y values in a 2-column output file.
pybacktrack.interpolate_file(
 function_y_of_x,
 'input_x_values.txt',
 'output_x_y_values.txt')

…is equivalent to running the interpolate script example:

python -m pybacktrack.util.interpolate_cli -cx 1 -cy 0 -c function_y_of_x.txt -- input_x_values.txt output_x_y_values.txt

Stratigraphy

This document covers drill site stratigraphy, and lithology names that reference lithology definitions of density, surface porosity and porosity decay.

	Drill site

	Backtracking versus backstripping sites

	Drill site file format

	Base sediment layer

	Geohistory analysis

	Lithology Definitions

	Bundled lithology definitions

	Lithology file format

	Specifying lithology definitions

	Conflicting lithology definitions

Drill site

Both backtracking and backstripping involve sediment decompaction over time.
So the main input file for backtracking and backstripping is a drill site.
It provides a record of the present-day litho-stratigraphy of the sediment sitting on top
of the submerged oceanic or continental crust.

The difference between backtracking and backstripping is whether recorded paleo-water depths are
recorded in the drill site file. When there are no recorded paleo-water depths, backtracking
uses a known model of tectonic subsidence (oceanic or continental) to determine the unknown paleo-water depths.
Conversely, when there is a record of paleo-water depths, backstripping
uses these known paleo-water depths to determine the unknown history of tectonic subsidence.

Backtracking versus backstripping sites

ODP drill site 699 is located on deep ocean crust and has no recorded paleo-water depths:

SiteLongitude = -30.677
SiteLatitude = -51.542
SurfaceAge = 0

bottom_age bottom_depth lithology
 18.7 85.7 Diatomite 0.7 Clay 0.3
 25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
 31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
 31.9 243.1 Sand 1
 36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
 40.8 382.6 Chalk 1
 54.5 496.6 Chalk 1
 55.3 516.3 Chalk 0.5 Clay 0.5

So it is suitable for backtracking, to find the unknown paleo-water depths.

In contrast, the sunrise drill site is located on shallower continental crust and has a record of paleo-water depths:

SiteLatitude = -9.5901
SiteLongitude = 128.1538
SurfaceAge = 0.0000
#
bottom_age bottom_depth min_water_depth max_water_depth lithology
 2.000 462.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 10.000 525.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 24.000 822.000 0.000 100.000 Shale 0.10 Limestone 0.80 Sand 0.10
 30.000 1062.000 0.000 100.000 Shale 0.30 Limestone 0.55 Dolostone 0.05 Sand 0.10
 34.000 1086.000 0.000 100.000 Shale 0.20 Limestone 0.10 Sand 0.70
 45.000 1366.000 0.000 100.000 Shale 0.10 Limestone 0.75 Dolostone 0.05 Sand 0.10
 58.000 1442.000 0.000 100.000 Shale 0.15 Limestone 0.15 Sand 0.70
 68.000 1494.000 50.000 200.000 Shale 0.45 Limestone 0.50 Sand 0.05
 83.000 1521.000 20.000 200.000 Shale 0.30 Limestone 0.65 Sand 0.05
 86.000 1545.000 20.000 200.000 Shale 0.55 Limestone 0.35 Sand 0.10
 88.000 1582.000 20.000 200.000 Shale 0.35 Limestone 0.65
 90.000 1620.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 95.000 1890.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 100.000 2036.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 107.000 2062.000 20.000 200.000 Shale 0.64 Limestone 0.18 Sand 0.18
 125.000 2066.000 0.000 100.000 Shale 0.40 Chalk 0.10 Sand 0.50
 160.000 2068.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 165.000 2130.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 170.000 2176.000 0.000 100.000 Shale 0.50 Sand 0.50
 177.000 2187.000 -10.000 25.000 Shale 0.30 Sand 0.70
 180.000 2237.000 -10.000 25.000 Shale 0.30 Sand 0.70
 190.000 2311.000 -10.000 20.000 Shale 0.30 Sand 0.70

So it is suitable for backstripping, to find the unknown history of tectonic subsidence.
Note that this site records the paleo-water depths as two extra columns, for the minimum and maximum water depths.
Backstripping will then use these paleo-water depths, along with sediment decompaction, to reveal the complex tectonic subsidence
of rift stretching at the site location.

Note

It is possible, although perhaps not desirable, to backtrack (instead of backstrip) the sunrise drill site
to provide simulated paleo-water depths via a built-in model of continental rift stretching.
This would involve ignoring the recorded paleo-water depth columns (using the -c option of backtrack)
and supplying the start and end times of rifting (using the -rs and -re options of backtrack).

Drill site file format

As seen in the Backtracking versus backstripping sites,
the file format of drill sites consist of two main sections. The top section specifies the attributes
of the drill site, and the bottom section specifies the stratigraphic layers.

The attributes SiteLongitude and SiteLatitude specify the drill site location (in degrees).

Note

If SiteLongitude and SiteLatitude are not specified then they must be specified
directly in the backtrack or backstrip
module using the -w command-line option, or the well_location argument of the
pybacktrack.backtrack_and_write_well() or pybacktrack.backstrip_and_write_well() function.

For each stratigraphic layer in the drill site there is a mixture of lithologies representing the
stratigraphic composition of that layer. Each lithology (in a layer) is identified by a lithology name
and the fraction it contributes to the layer (where all the fractions must add up to 1.0).
Each lithology name is used to look up a list of lithology definitions
to obtain lithology density, surface porosity and porosity decay.

For each stratigraphic layer in the drill site there is also an age (Ma) and a depth (m) representing the bottom of that layer.
The top age and depth of each layer is the bottom age and depth of the layer above. Since the surface (top) layer
has no layer above it, the top age and depth of the surface layer are 0Ma and 0m respectively. However,
if the SurfaceAge attribute is specified then it replaces the top age of the surface layer.
A non-zero value of SurfaceAge implies that sediment deposition ended prior to present day.
In other words, it represents the age of the total sediment surface.

Note

The SurfaceAge attribute is optional, and defaults to 0Ma if not specified.

Base sediment layer

It is also possible that the sediment thickness recorded at the drill site is less than the total sediment
thickness. This happens when the drill site does not penetrate all the way to the basement depth of oceanic or continental crust.
In this situation a base stratigraphic layer is automatically added during backtracking and backstripping
to represent sediment from the bottom of the drill site down to the basement depth of oceanic or continental crust.

For backtracking, the bottom age of this new base layer is the age of oceanic crust if the drill site is on ocean crust,
or the age that rifting starts if the drill site is on continental crust (since it is assumed that deposition began when
continental stretching started) - see backtrack for more details.

For backstripping, the bottom age of this new base layer is simply duplicated from the age at the bottom of the drill site
(ie, bottom age of deepest stratigraphic layer). This is because, unlike backtracking, we don’t know the age of the crust.
But this is fine since the decompacted output only uses the top age of each layer.
And the decompacted sediment thickness/density (and hence the tectonic subsidence)
still takes into account the base sediment layer and hence the total sediment thickness.
Also since backstripping requires min/max recorded paleo-water depths for each layer, these are simply duplicated
from the bottom layer of the drill site to the new base layer.

By default the lithology of the base layer is Shale, but can be changed using the -b command-line option in
the backtrack and backstrip modules. To determine the
total sediment thickness, a grid is sampled at the drill site location. The default grid is
bundled inside pybacktrack. However, you can override this with your
own grid by using the -s command-line option in the backtrack and
backstrip modules.

The default total sediment thickness grid is:

	Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., et al. (2019).
GlobSed: Updated total sediment thickness in the world’s oceans. [https://doi.org/10.1029/2018GC008115]
Geochemistry, Geophysics, Geosystems, 20. DOI: 10.1029/2018GC008115

Note

The default total sediment thickness grid was updated in pyBacktrack version 1.4.

Warning

If the drill site thickness happens to exceed the total sediment thickness then no base layer is added,
and a warning is emitted to standard error on the console.
This can happen as a result of uncertainties in the sediment thickness grid.

You can optionally write out an amended drill site file that adds this base sediment layer.
This is useful when you want to know the basement depth at the drill site location.

For example, backtracking the ODP drill site 699 (located on ocean crust):

SiteLongitude = -30.677
SiteLatitude = -51.542
SurfaceAge = 0

bottom_age bottom_depth lithology
 18.7 85.7 Diatomite 0.7 Clay 0.3
 25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
 31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
 31.9 243.1 Sand 1
 36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
 40.8 382.6 Chalk 1
 54.5 496.6 Chalk 1
 55.3 516.3 Chalk 0.5 Clay 0.5

…generates the following amended drill site file:

SiteLatitude = -51.5420
SiteLongitude = -30.6770
SurfaceAge = 0.0000
#
bottom_age bottom_depth lithology
 18.700 85.700 Diatomite 0.70 Clay 0.30
 25.000 142.000 Coccolith_ooze 0.30 Diatomite 0.50 Mud 0.20
 31.300 233.600 Coccolith_ooze 0.30 Diatomite 0.70
 31.900 243.100 Sand 1.00
 36.700 335.400 Coccolith_ooze 0.80 Diatomite 0.20
 40.800 382.600 Chalk 1.00
 54.500 496.600 Chalk 1.00
 55.300 516.300 Chalk 0.50 Clay 0.50
 79.133 601.000 Shale 1.00

…containing the extra base shale layer with a bottom age equal to the age grid sampled at the drill site
and a bottom depth equal to the total sediment thickness.

Note

To output an amended drill site file, specify the amended output filename using the -o command-line option
in the backtrack or backstrip module.

Geohistory analysis

The Decompacting Stratigraphic Layers [https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb]
notebook shows how to visualize the decompaction of stratigraphic layers at a drill site.

Note

The example notebooks are installed as part of the example data which can be installed by following these instructions.

That notebook decompacts drill sites in the context of backtracking and backstripping (covered in later sections), but
regardless of whether we’re backstripping or backtracking we are still decompacting the sediment layers in the same way. The following image (from that notebook)
shows the decompaction of a shallow continental drill site over time.

[image: _images/geohistory_sunrise.png]

Lithology Definitions

The stratigraphy layers in a drill site contain lithology names that reference
lithology definitions. Each lithology definition contains a density, a surface porosity and a porosity decay.

These definitions are stored in lithology files.

Bundled lithology definitions

There are two lithology files currently bundled
inside pybacktrack, one containing primary lithologies and the other extended lithologies.

The primary lithologies (inside pybacktrack) contains the deep-sea lithologies listed in Table 1 in the pyBacktrack paper:

	Müller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018,
PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust [https://doi.org/10.1029/2017GC007313],
Geochemistry, Geophysics, Geosystems, 19, 1898-1909, doi: 10.1029/2017GC007313.

name density porosity decay
kg/m3 (%/100) m
#
Average_ocean_floor_sediment 2647 0.66 1333 # Kominz et al. [2011]
Basalt 2700 0.2 5000 # Turer and Maynard [2003]
Biogenic_sand 2710 0.89 1338 # Kominz et al. [2011]
Carbonate_sand 2710 0.48 3990 # Goldhammer [1997]
Chalk 2710 0.7 1408 # Sclater and Christie [1980]
Clay 2735 0.76 1252 # Kominz et al. [2011]
Coccolith_ooze 2710 0.59 1660 # Kominz et al. [2011]
Diatomite 2457 0.84 436 # Kominz et al. [2011]
Dolomite 2870 0.38 1986 # Schmoker and Halley [1982]
Limestone 2850 0.51 4545 # Turer and Maynard [2003]
Micrite 2710 0.69 1135 # Kominz et al. [2011]
Mud 2438 0.36 2015 # Van Sickel et al. [2004]
Sand 2650 0.49 3704 # Sclater and Christie [1980]
Shale 2700 0.63 1960 # Sclater and Christie [1980]
Shaley_sand 2680 0.56 2564 # Sclater and Christie [1980]
Silt 2661 0.76 1091 # Kominz et al. [2011]

And the extended lithologies (inside pybacktrack) mostly contain shallow-water lithologies:

	Baldwin, S., 1999,
Quantifying the development of a deep sedimentary basin: the Bonaparte Basin, NW Australia, PhD Thesis, Univ. of Cambridge.

name density porosity decay
kg/m3 (%/100) m
#
Anhydrite 2960 0.40 500
Chert 1929 0.65 2850
Conglomerate 3500 0.48 2700
Dolostone 2700 0.48 3500
Grainstone 2700 0.48 3500
Reef 2700 0.10 3500
Rhyolite 2820 0.20 2700
Salt 2160 0.20 750

Lithology file format

As seen in the bundled lithology definitions,
the first column is the lithology name. The second column is the lithology’s sediment density (kg/m3).
The third column is the surface porosity as a fraction, and fourth column is porosity decay (m).

Note

You can also use your own lithology files provided they use this format.

Porosity is the contribution of water to the sediment volume and decays exponentially with depth according to the decay constant
(since sediment compaction increases with depth and squeezes out more water from between the sediment grains).

Specifying lithology definitions

Any number of lithology files can be specified. In the backtrack and
backstrip modules these are specified using the -l command-line option.
With this option you can specify one or more lithologies files including the bundled
lithologies. To specify the bundled primary and extended lithologies you specify primary and extended.
And to specify your own lithology files you provide the entire filename as usual. If you don’t specify the -l option
then it defaults to using only the primary lithologies (extended lithologies are not included by default).

Note

If you don’t use the -l option then only the primary lithologies will be included (they are the default).

However if you use the -l option but do not specify primary then the primary lithologies will not be included.

Conflicting lithology definitions

When specifying more than one lithology file it is possible to have conflicting definitions.
This occurs when two or more lithology files contain the same lithology name but have different values for its
density, surface porosity or porosity decay.
When there is a conflict, the lithology definition is taken from the last conflicting lithology file specified.
For example, if you specify -l primary my_conflicting_lithologies.txt then conflicting lithologies in
my_conflicting_lithologies.txt override those in primary. However, specifying the reverse order with
-l my_conflicting_lithologies.txt primary will result in primary overriding those in my_conflicting_lithologies.txt.

Backtrack

	Overview

	Running backtrack

	Example

	Backtrack output

	Amended drill site output

	Decompacted output

	Sea level variation

	Oceanic and continental tectonic subsidence

	Oceanic versus continental drill sites

	Present-day tectonic subsidence

	Oceanic subsidence

	Continental subsidence

	Dynamic topography

	Geohistory analysis

	Continental subsidence

	Oceanic subsidence

Overview

The backtrack module is used to find paleo water depths from a tectonic subsidence model, and sediment decompaction over time.
The tectonic subsidence model is either an age-to-depth curve (in ocean basins) or rifting (near continental passive margins).

Running backtrack

You can either run backtrack as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.backtrack_cli ...

…or import pybacktrack into your own script, calling its functions and specifying parameters as function arguments (...):

import pybacktrack

pybacktrack.backtrack_and_write_well(...)

Note

You can run python -m pybacktrack.backtrack_cli --help to see a description of all command-line options available, or
see the backtracking reference section for documentation on the function parameters.

Example

For example, revisiting our backtracking example, we can run it from the command-line as:

python -m pybacktrack.backtrack_cli \
 -w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt \
 -d age compacted_depth compacted_thickness decompacted_thickness decompacted_density decompacted_sediment_rate decompacted_depth dynamic_topography water_depth tectonic_subsidence lithology \
 -ym M2 \
 -slm Haq87_SealevelCurve_Longterm \
 -o ODP-114-699_backtrack_amended.txt \
 -- \
 ODP-114-699_backtrack_decompacted.txt

…or write some Python code to do the same thing:

import pybacktrack

Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt'
amended_well_output_filename = 'ODP-114-699_backtrack_amended.txt'
decompacted_output_filename = 'ODP-114-699_backtrack_decompacted.txt'

Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backtrack_and_write_well(
 decompacted_output_filename,
 input_well_filename,
 dynamic_topography_model='M2',
 sea_level_model='Haq87_SealevelCurve_Longterm',
 # The columns in decompacted output file...
 decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,
 pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE,
 pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY,
 pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH,
 pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE,
 pybacktrack.BACKTRACK_COLUMN_LITHOLOGY],
 # Might be an extra stratigraphic well layer added from well bottom to ocean basement...
 ammended_well_output_filename=amended_well_output_filename)

Note

The drill site file pybacktrack_examples/example_data/ODP-114-699-Lithology.txt is part of the example data.

Backtrack output

For each stratigraphic layer in the input drill site file, backtrack can write one or more parameters to an output file.

Running the above example on ODP drill site 699:

SiteLongitude = -30.677
SiteLatitude = -51.542
SurfaceAge = 0

bottom_age bottom_depth lithology
 18.7 85.7 Diatomite 0.7 Clay 0.3
 25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
 31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
 31.9 243.1 Sand 1
 36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
 40.8 382.6 Chalk 1
 54.5 496.6 Chalk 1
 55.3 516.3 Chalk 0.5 Clay 0.5

…produces an amended drill site output file containing an extra base sediment layer,
and a decompacted output file containing the decompacted output parameters like
sediment thickness and water depth.

Amended drill site output

The amended drill site output file:

SiteLatitude = -51.5420
SiteLongitude = -30.6770
SurfaceAge = 0.0000
#
bottom_age bottom_depth lithology
 18.700 85.700 Diatomite 0.70 Clay 0.30
 25.000 142.000 Coccolith_ooze 0.30 Diatomite 0.50 Mud 0.20
 31.300 233.600 Coccolith_ooze 0.30 Diatomite 0.70
 31.900 243.100 Sand 1.00
 36.700 335.400 Coccolith_ooze 0.80 Diatomite 0.20
 40.800 382.600 Chalk 1.00
 54.500 496.600 Chalk 1.00
 55.300 516.300 Chalk 0.50 Clay 0.50
 79.133 601.000 Shale 1.00

There is an extra base sediment layer that extends from the bottom
of the drill site (516.3 metres) to the total sediment thickness (601 metres).
The bottom age of this new base layer (86.79 Ma) is the age of oceanic crust that ODP drill site 699 is on.
If it had been on continental crust (near a passive margin such as DSDP drill site 327) then
the bottom age of this new base layer would have been when rifting started
(since we would have assumed deposition began when continental stretching began).

See also

Base sediment layer and Oceanic versus continental drill sites

Decompacted output

The decompacted output file:

SiteLatitude = -51.5420
SiteLongitude = -30.6770
SurfaceAge = 0.0000
#
age compacted_depth compacted_thickness decompacted_thickness decompacted_density decompacted_sediment_rate decompacted_depth dynamic_topography water_depth tectonic_subsidence lithology
 0.000 0.000 601.000 601.000 1726.994 5.810 0.000 0.000 3798.317 4134.284 Diatomite 0.70 Clay 0.30
 18.700 85.700 515.300 552.679 1733.298 10.682 108.648 75.174 3604.761 3872.267 Coccolith_ooze 0.30 Diatomite 0.50 Mud 0.20
 25.000 142.000 459.000 518.231 1715.612 24.388 175.945 88.541 3543.441 3770.680 Coccolith_ooze 0.30 Diatomite 0.70
 31.300 233.600 367.400 431.443 1727.755 16.781 329.587 102.254 3536.973 3651.861 Sand 1.00
 31.900 243.100 357.900 424.770 1719.132 25.543 339.656 104.005 3544.482 3639.106 Coccolith_ooze 0.80 Diatomite 0.20
 36.700 335.400 265.600 342.298 1675.058 17.557 462.265 128.465 3467.220 3519.684 Chalk 1.00
 40.800 382.600 218.400 291.817 1662.325 13.524 534.247 133.268 3439.494 3423.104 Chalk 1.00
 54.500 496.600 104.400 147.135 1649.440 45.709 719.529 161.651 3103.703 2999.804 Chalk 0.50 Clay 0.50
 55.300 516.300 84.700 114.840 1678.129 5.054 756.096 162.953 3116.404 2970.460 Shale 1.00

The age, compacted_depth and lithology columns are the same as the bottom_age, bottom_depth and lithology columns
in the input drill site (except there is also a row associated with the surface age).

The compacted_thickness column is the total sediment thickness (601 metres - see base sediment layer of
amended drill site above) minus compacted_depth.
The decompacted_thickness column is the thickness of all sediment at the associated age. In other words, at each consecutive age
another stratigraphic layer is essentially removed, allowing the underlying layers to expand (due to their porosity). At present day
(or the surface age) the decompacted thickness is just the compacted thickness. The decompacted_density column is the average density
integrated over the decompacted thickness of the drill site (each stratigraphic layer contains a mixture of water and sediment according
to its porosity at the decompacted depth of the layer). The decompacted_sediment_rate column is the rate of sediment deposition in units of metres/Ma.
At each time it is calculated as the fully decompacted thickness (ie, using surface porosity only) of the surface stratigraphic layer
(whose deposition ends at the specified time) divided by the layer’s deposition time interval. The decompacted_depth column is similar to
decompacted_sediment_rate in that the stratigraphic layers are fully decompacted (using surface porosity only) as if no portion of any layer had
ever been buried. It is also similar to compacted_depth except all effects of compaction have been removed.
The dynamic_topography column is the dynamic topography elevation relative to present day (or zero if no dynamic topography model was specified).

Finally, tectonic_subsidence is the output of the underlying tectonic subsidence model,
and water_depth is obtained from tectonic subsidence by subtracting an isostatic correction of the decompacted sediment thickness.

Note

The output columns are specified using the -d command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the decompacted_columns argument of the pybacktrack.backtrack_and_write_well() function.
By default, only age and decompacted_thickness are output.

Sea level variation

A model of the variation of sea level relative to present day can optionally be used when backtracking.
This adjusts the isostatic correction of the decompacted sediment thickness to take into account sea-level variations.

There are two built-in sea level models bundled inside backtrack:

	Haq87_SealevelCurve - The Phanerozoic Record of Global Sea-Level Change [https://doi.org/10.1126/science.1116412]

	Haq87_SealevelCurve_Longterm - Normalised to start at zero at present-day.

A sea-level model is optional. If one is not specified then sea-level variation is assumed to be zero.

Note

A built-in sea-level model can be specified using the -slm command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the sea_level_model argument of the pybacktrack.backtrack_and_write_well() function.

Note

It is also possible to specify your own sea-level model. This can be done by providing your own text file containing a column of ages (Ma) and a
corresponding column of sea levels (m), and specifying the name of this file to the -sl command-line option or to the sea_level_model argument
of the pybacktrack.backtrack_and_write_well() function.

Oceanic and continental tectonic subsidence

Tectonic subsidence is modelled separately for ocean basins and continental passive margins.
The subsidence model chosen by the backtrack module depends on whether the drill site is on oceanic or continental crust.
This is determined by an oceanic age grid. Since the age grid captures only oceanic crust, a drill site inside this region
will automatically use the oceanic subsidence model whereas a drill site outside this region uses the continental subsidence model.

The default present-day age grid bundled inside backtrack is a 6-minute resolution grid
of the age of the world’s ocean crust that uses the timescale of Gee and Kent (2007) [https://doi.org/10.1016/B978-044452748-6.00097-3]:

	Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N., Cannon, J., Whittaker, J., Matthews, K., McGirr, R., (2020),
A global dataset of present-day oceanic crustal age and seafloor spreading parameters [https://doi.org/10.1029/2020GC009214],
Geochemistry, Geophysics, Geosystems, doi: 10.1029/2020GC009214

Note

The default present-day age grid was updated in pyBacktrack version 1.4.

Note

You can optionally specify your own age grid using the -a command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the age_grid_filename argument of the pybacktrack.backtrack_and_write_well() function.

Oceanic versus continental drill sites

ODP drill site 699 is located on deeper ocean crust (as opposed to shallower continental crust):

SiteLongitude = -30.677
SiteLatitude = -51.542
SurfaceAge = 0

bottom_age bottom_depth lithology
 18.7 85.7 Diatomite 0.7 Clay 0.3
 25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
 31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
 31.9 243.1 Sand 1
 36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
 40.8 382.6 Chalk 1
 54.5 496.6 Chalk 1
 55.3 516.3 Chalk 0.5 Clay 0.5

So it will use the oceanic subsidence model.

See also

Oceanic subsidence

In contrast, DSDP drill site 327 is located on shallower continental crust (as opposed to deeper ocean crust):

SiteLongitude = -46.7837
SiteLatitude = -50.8713
RiftStartAge = 160
RiftEndAge = 120
SurfaceAge = 0

bottom_age bottom_depth lithology
 1.5 10.0 Shaley_sand 1
 55.8 30.0 Clay 1
 59.9 68.0 Diatomite 0.7 Clay 0.3
 62.2 90.0 Clay 1
 77.4 142.0 Coccolith_ooze 0.7 Biogenic_sand 0.3
 86.4 154.0 Clay 1
 113.1 324.0 Coccolith_ooze 0.3 Clay 0.7
 122.3 469.5 Clay 1

So it will use the continental subsidence model. Since continental subsidence involves rifting, it requires a rift start and end time.
These extra rift parameters can be specified at the top of the drill site file as RiftStartAge and RiftEndAge attributes
(see Continental subsidence).

See also

Continental subsidence

If you are not sure whether your drill site lies on oceanic or continental crust then first prepare your drill site assuming it’s on
oceanic crust (since this does not need rift start and end ages). If an error message is generated when
running backtrack then you’ll need to determine the rift start and end age, then
add these to your drill site file as RiftStartAge and RiftEndAge attributes, and then run backtrack again.

Note

In pyBacktrack version 1.4 if the RiftStartAge and RiftEndAge attributes are not specified in your drill site file then
they are obtained implicitly from the builtin rift start/end time grids (see Continental subsidence), so an
error message is unlikely to be generated when your drill site file is on continental crust.

Present-day tectonic subsidence

The tectonic subsidence at present day is used in both the oceanic and continental subsidence models.
Tectonic subsidence is unloaded water depth, that is with sediment removed.
So to obtain an accurate value, backtrack starts with a bathymetry grid to obtain the present-day water depth (the depth of the sediment surface).
Then an isostatic correction of the present-day sediment thickness (at the drill site) takes into account the removal of sediment to reveal
the present-day tectonic subsidence. The isostatic correction uses the average sediment density of the drill site stratigraphy.

The default present-day bathymetry grid bundled inside backtrack is a
6-minute resolution global grid of the land topography and ocean bathymetry (although only the ocean bathymetry is actually needed):

	Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis [https://dx.doi.org/10.7289/V5C8276M].
NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009

Note

You can optionally specify your own bathymetry grid using the -t command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the topography_filename argument of the pybacktrack.backtrack_and_write_well() function.

Note

If you specify your own bathymetry grid, ensure that its ocean water depths are negative.
It is assumed that elevations in the grid above/below sea level are positive/negative.

Oceanic subsidence

Oceanic subsidence is somewhat simpler and more accurately modelled than continental subsidence (due to no lithospheric stretching).

The age of oceanic crust at the drill site (sampled from the oceanic age grid) can be converted to tectonic subsidence (depth with sediment removed)
by using an age-to-depth model. There are three models built into backtrack:

	RHCW18 - Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere system [https://doi.org/10.1016/j.pepi.2020.106559]

	CROSBY_2007 - Crosby, A.G., (2007). Aspects of the relationship between topography and gravity on the Earth and Moon, PhD thesis, University of Cambridge

The Python source code that implements this age-depth relationship can be found
here [https://github.com/EarthByte/pyBacktrack/blob/8e21ec2b49be101e88d80e8ccb18fe736d68a277/pybacktrack/age_to_depth.py#L195-L264].
And note that additional background information on this model can be found in:
Crosby, A.G. and McKenzie, D., 2009. An analysis of young ocean depth, gravity and global residual topography [https://doi.org/10.1111/j.1365-246X.2009.04224.x].

	GDH1 - Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with lithospheric age [https://doi.org/10.1038/359123a0]

The default model is RHCW18.

Note

The default age-to-depth model was updated in pyBacktrack version 1.4. It is now RHCW18. Previously it was GDH1.

Note

These oceanic subsidence models can be specified using the -m command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the ocean_age_to_depth_model argument of the pybacktrack.backtrack_and_write_well() function.

Note

It is also possible to specify your own age-to-depth model. This can be done by providing your own text file containing a column of ages and a
corresponding column of depths, and specifying the name of this file along with two integers representing the age and depth column indices to the
-m command-line option. Or you can pass your own function as the ocean_age_to_depth_model argument of the pybacktrack.backtrack_and_write_well() function,
where your function should accept a single age (Ma) argument and return the corresponding depth (m).

Since the drill site might be located on anomalously thick or thin ocean crust, a constant offset is added to the age-to-depth model to ensure the model subsidence matches
the actual subsidence at present day.

Continental subsidence

Continental subsidence is somewhat more complex and less accurately modelled than oceanic subsidence (due to lithospheric stretching).

The continental subsidence model has two components of rifting as described in
PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust [https://doi.org/10.1029/2017GC007313].
The first contribution is initial subsidence due to lithospheric thinning where low-density crust is thinned and hot asthenosphere rises underneath.
In our model the crust and lithospheric mantle are identically stretched (uniform extension).
The second contribution is thermal subsidence where the lithosphere thickens as it cools due to conductive heat loss.
In our model thermal subsidence only takes place once the stretching stage has ended.
In this way, there is instantaneous stretching from a thermal perspective (in the sense that, although stretching happens over a finite period of time,
the model assumes no cooling during the stretching stage).

Note

The tectonic subsidence at the start of rifting is zero. This is because it is assumed that rifting begins at sea level, and begins with a
sediment thickness of zero (since sediments are yet to be deposited on newly forming ocean crust).

For drill sites on continental crust, the rift end time must be provided. However the rift start time is optional. If it is not specified then
it is assumed to be equal to the rift end time. In other words, lithospheric stretching is assumed to happen immediately at the rift end time
(as opposed to happening over a period of time). This is fine for stratigraphic layers deposited after rifting has ended, since the subsidence will be
the same regardless of whether a rift start time was specified or not.

Note

The rift start and end times can be specified in the drill site file using the RiftStartAge and RiftEndAge attributes.
Or they can be specified directly on the backtrack command-line using the -rs and -re options respectively
(run python -m pybacktrack.backtrack_cli --help to see all options). Or using the rifting_period argument
of the pybacktrack.backtrack_and_write_well() function.

Note

If the rift end time (and optional start time) is not explicitly specified in the drill site file or explicitly on the backtrack command-line
(or explicitly via the pybacktrack.backtrack_and_write_well() function) then both the rift start and end times are obtained implicitly from the
builtin rift start/end time grids. If the well location is outside valid regions of the rift start/end time grids then an error is
generated and you must then explicitly provide the rift end time (and optionally the rift start time). However currently the rift grids cover all
submerged continental crust (ie, where the total sediment thickness grid contains valid values but the age grid does not) and not just the areas
that are rifting - see rift gridding - so an error is unlikely to be generated.

If a rift start time is specified, then the stretching factor varies exponentially between the rift start and end times (assuming a constant strain rate).
The stretching factor at the rift start time is 1.0 (since the lithosphere has not yet stretched). The stretching factor at the rift end time is
estimated such that our model produces a subsidence matching the actual subsidence at present day, while
also thinning the crust to match the actual crustal thickness at present day.

Note

The crustal thickness at the end of rifting and at present day are assumed to be the same.

Warning

If the estimated rift stretching factor (at the rift end time) results in a tectonic subsidence inaccuracy
(at present day) of more than 100 metres, then a warning is emitted to standard error on the console.
This can happen if the actual present-day subsidence is quite deep and the stretching factor required to achieve
this subsidence would be unrealistically large and result in a pre-rift crustal thickness
(equal to the stretching factor multiplied by the actual present-day crustal thickness) that exceeds
typical lithospheric thicknesses (125km). In this case the stretching factor is clamped to avoid this but,
as a result, the modeled subsidence is not as deep as the actual subsidence.

The default present-day crustal thickness grid bundled inside backtrack is a
1-degree resolution grid of the thickness of the crustal part of the lithosphere:

	Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust [http://igppweb.ucsd.edu/~gabi/crust1.html#download],
Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013

Note

You can optionally specify your own crustal thickness grid using the -k command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the crustal_thickness_filename argument of the pybacktrack.backtrack_and_write_well() function.

Dynamic topography

The effects of dynamic topography can be included in the models of tectonic subsidence (both oceanic and continental).

A dynamic topography model is optional. If one is not specified then dynamic topography is assumed to be zero.

All dynamic topography models consist of a sequence of time-dependent global grids (where each grid is associated with a past geological time).
The grids are in the mantle reference frame (instead of the plate reference frame) and hence the drill site location must be reconstructed
(back in time) before sampling these grids. To enable this, a dynamic topography model also includes an associated static-polygons
file to assign a reconstruction plate ID to the drill site, and associated rotation file(s) to reconstruct the drill site location.

Note

The dynamic topography grids are interpolated at times not coinciding with the grid times.
The method of interpolation changed in pyBacktrack version 1.4 (as described in the notes of pybacktrack.DynamicTopography.sample()) -
however this change has no effect at the grid times (only between grid times).

Warning

If the drill site is reconstructed to a time that is older than supported by the dynamic topography model then the oldest dynamic topography grid is used.
Also note that the drill site can be reconstructed to a time that is older than the age of the crust it is located on if the bottom age
in the drill site file is older than the basement age.

Dynamic topography is included in the oceanic subsidence model by adjusting the subsidence to account for the change in
dynamic topography at the drill site since present day.

See also

Oceanic subsidence

Dynamic topography is included in the continental subsidence model by first removing the effects of dynamic topography (between the start of rifting and present day)
prior to estimating the rift stretching factor. This is because estimation of the stretching factor only considers subsidence due to lithospheric thinning (stretching)
and subsequent thickening (thermal cooling). Once the optimal stretching factor has been estimated, the continental subsidence is adjusted to account for the change in
dynamic topography since the start of rifting.

See also

Continental subsidence

These are the built-in dynamic topography models bundled inside backtrack:

	Young et al., 2022 - Long-term Phanerozoic sea level change from solid Earth processes [https://doi.org/10.1016/j.epsl.2022.117451]

	gld428 [http://portal.gplates.org/dynamic_topography_cesium/?model=gld428&name=Gld428_250-0Ma]

	Braz et al., 2021 - Modelling the role of dynamic topography and eustasy in the evolution of the Great Artesian Basin [https://doi.org/10.1111/bre.12606]

	D10_gmcm9 [http://portal.gplates.org/dynamic_topography_cesium/?model=gmcm9&name=D10_gmcm9]

	Cao et al., 2019 - The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic [https://doi.org/10.1016/j.tecto.2019.04.018]

	AY18 [http://portal.gplates.org/dynamic_topography_cesium/?model=gld324&name=AY18]

	KM16 [http://portal.gplates.org/dynamic_topography_cesium/?model=gld321&name=KM16]

	Müller et al., 2017 - Dynamic topography of passive continental margins and their hinterlands since the Cretaceous [https://doi.org/10.1016/j.gr.2017.04.028]

	M1 [http://portal.gplates.org/dynamic_topography_cesium/?model=M1&name=M1]

	M2 [http://portal.gplates.org/dynamic_topography_cesium/?model=M2&name=M2]

	M3 [http://portal.gplates.org/dynamic_topography_cesium/?model=M3&name=M3]

	M4 [http://portal.gplates.org/dynamic_topography_cesium/?model=M4&name=M4]

	M5 [http://portal.gplates.org/dynamic_topography_cesium/?model=M5&name=M5]

	M6 [http://portal.gplates.org/dynamic_topography_cesium/?model=M6&name=M6]

	M7 [http://portal.gplates.org/dynamic_topography_cesium/?model=M7&name=M7]

	Rubey et al., 2017 - Global patterns of Earth’s dynamic topography since the Jurassic [https://doi.org/10.5194/se-2017-26]

	terra [http://portal.gplates.org/dynamic_topography_cesium/?model=terra&name=Terra]

	Müller et al., 2008 - Long-term sea-level fluctuations driven by ocean basin dynamics [https://doi.org/10.1126/science.1151540]

	ngrand [http://portal.gplates.org/dynamic_topography_cesium/?model=ngrand&name=dynto_ngrand]

	s20rts [http://portal.gplates.org/dynamic_topography_cesium/?model=s20rts&name=dynto_s20rts]

	smean [http://portal.gplates.org/dynamic_topography_cesium/?model=smean&name=dynto_smean]

Note

The above model links reference dynamic topography models that can be visualized in the GPlates Web Portal [http://portal.gplates.org].

The M1 model is a combined forward/reverse geodynamic model, while models M2-M7 are forward models.
Models ngrand, s20rts and smean are backward-advection models.
The backward-advection models are generally good for the recent geological past (up to last 70 million years).
While the M1-M7 models are most useful when it is necessary to look at times older than 70 Ma
because their oceanic paleo-depths lack the regional detail at more recent times that the backward-advection models capture
(because of their assimilation of seismic tomography).
M1 also assimilates seismic tomography but suffers from other shortcomings.

Note

A built-in dynamic topography model can be specified using the -ym command-line option (run python -m pybacktrack.backtrack_cli --help to see all options), or
using the dynamic_topography_model argument of the pybacktrack.backtrack_and_write_well() function.

Note

It is also possible to specify your own dynamic topography model.
This can be done by providing your own grid list text file with the first column containing a list of the dynamic topography grid filenames
(where each filename should be relative to the directory on the list file) and the second column containing the associated grid times (in Ma).
You’ll also need the associated static-polygons file, and one or more associated rotation files.
The grid list filename, static-polygons filename and one or more rotation filenames are then specified using the
-y command-line option (run python -m pybacktrack.backtrack_cli --help to see all options),
or to the dynamic_topography_model argument of the pybacktrack.backtrack_and_write_well() function.

Geohistory analysis

The Decompacting Stratigraphic Layers [https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb]
notebook shows how to visualize the decompaction of stratigraphic layers at a drill site.

Note

The example notebooks are installed as part of the example data which can be installed by following these instructions.

Continental subsidence

One of the examples in that notebook demonstrates decompaction of a shallow continental drill site using backtracking.
The tectonic subsidence (black dashed line) is from our model of continental subsidence and
the paleo water depths (blue fill) are backtracked using tectonic subsidence and sediment decompaction.
Note that, unlike backstripping, dynamic topography does affect tectonic subsidence
(because its effects are included in the model of tectonic subsidence).

[image: _images/geohistory_DSDP-36-327.png]

Note

There is a base sediment layer below the drill site (from the bottom of drill site to basement depth) since the drill site does not reach basement depth.
And for this drill site the base sediment layer is quite thick because the default total sediment thickness grid is not as accurate near continental margins (compared to deeper ocean basins).

Oceanic subsidence

Another example in that notebook demonstrates decompaction of an oceanic drill site using backtracking.
The tectonic subsidence (black dashed line) is from our model of oceanic subsidence and
the paleo water depths (blue fill) are backtracked using tectonic subsidence and sediment decompaction.
Note that, unlike backstripping, dynamic topography does affect tectonic subsidence
(because its effects are included in the model of tectonic subsidence).

[image: _images/geohistory_ODP-114-699.png]

Note

There is a base sediment layer below the drill site (from the bottom of drill site to basement depth) since the drill site does not reach basement depth.

Backstrip

	Overview

	Running backstrip

	Example

	Backstrip output

	Amended drill site output

	Decompacted output

	Sea level variation

	Geohistory analysis

Overview

The backstrip module is used to find tectonic subsidence from paleo water depths, and sediment decompaction over time.

Running backstrip

You can either run backstrip as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.backstrip_cli ...

…or import pybacktrack into your own script, calling its functions and specifying parameters as function arguments (...):

import pybacktrack

pybacktrack.backstrip_and_write_well(...)

Note

You can run python -m pybacktrack.backstrip_cli --help to see a description of all command-line options available, or
see the backstripping reference section for documentation on the function parameters.

Example

To backstrip the sunrise drill site (located on shallower continental crust), and output all available parameters (via the -d option), we can run it from the command-line as:

python -m pybacktrack.backstrip_cli \
 -w pybacktrack_examples/example_data/sunrise_lithology.txt \
 -l primary extended \
 -d age compacted_depth compacted_thickness decompacted_thickness decompacted_density decompacted_sediment_rate decompacted_depth min_tectonic_subsidence max_tectonic_subsidence average_tectonic_subsidence min_water_depth max_water_depth average_water_depth lithology \
 -slm Haq87_SealevelCurve_Longterm \
 -o sunrise_backstrip_amended.txt \
 -- \
 sunrise_backstrip_decompacted.txt

…or write some Python code to do the same thing:

import pybacktrack

Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/sunrise_lithology.txt'
amended_well_output_filename = 'sunrise_backstrip_amended.txt'
decompacted_output_filename = 'sunrise_backstrip_decompacted.txt'

Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backstrip_and_write_well(
 decompacted_output_filename,
 input_well_filename,
 lithology_filenames=[pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME,
 pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME],
 sea_level_model=pybacktrack.BUNDLE_SEA_LEVEL_MODELS['Haq87_SealevelCurve_Longterm'],
 decompacted_columns=[pybacktrack.BACKSTRIP_COLUMN_AGE,
 pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH,
 pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS,
 pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS,
 pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY,
 pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE,
 pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH,
 pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE,
 pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE,
 pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE,
 pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH,
 pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH,
 pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH,
 pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY],
 # Might be an extra stratigraphic well layer added from well bottom to ocean basement...
 ammended_well_output_filename=amended_well_output_filename)

Note

The drill site file pybacktrack_examples/example_data/sunrise_lithology.txt is part of the example data.

Backstrip output

For each stratigraphic layer in the input drill site file, backstrip can write one or more parameters to an output file.

Running the above example on the sunrise drill site:

SiteLatitude = -9.5901
SiteLongitude = 128.1538
SurfaceAge = 0.0000
#
bottom_age bottom_depth min_water_depth max_water_depth lithology
 2.000 462.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 10.000 525.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 24.000 822.000 0.000 100.000 Shale 0.10 Limestone 0.80 Sand 0.10
 30.000 1062.000 0.000 100.000 Shale 0.30 Limestone 0.55 Dolostone 0.05 Sand 0.10
 34.000 1086.000 0.000 100.000 Shale 0.20 Limestone 0.10 Sand 0.70
 45.000 1366.000 0.000 100.000 Shale 0.10 Limestone 0.75 Dolostone 0.05 Sand 0.10
 58.000 1442.000 0.000 100.000 Shale 0.15 Limestone 0.15 Sand 0.70
 68.000 1494.000 50.000 200.000 Shale 0.45 Limestone 0.50 Sand 0.05
 83.000 1521.000 20.000 200.000 Shale 0.30 Limestone 0.65 Sand 0.05
 86.000 1545.000 20.000 200.000 Shale 0.55 Limestone 0.35 Sand 0.10
 88.000 1582.000 20.000 200.000 Shale 0.35 Limestone 0.65
 90.000 1620.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 95.000 1890.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 100.000 2036.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 107.000 2062.000 20.000 200.000 Shale 0.64 Limestone 0.18 Sand 0.18
 125.000 2066.000 0.000 100.000 Shale 0.40 Chalk 0.10 Sand 0.50
 160.000 2068.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 165.000 2130.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 170.000 2176.000 0.000 100.000 Shale 0.50 Sand 0.50
 177.000 2187.000 -10.000 25.000 Shale 0.30 Sand 0.70
 180.000 2237.000 -10.000 25.000 Shale 0.30 Sand 0.70
 190.000 2311.000 -10.000 20.000 Shale 0.30 Sand 0.70

…produces an amended drill site output file,
and a decompacted output file containing the decompacted output parameters like
sediment thickness and tectonic subsidence.

Amended drill site output

The amended drill site output file:

SiteLatitude = -9.5901
SiteLongitude = 128.1538
SurfaceAge = 0.0000
#
bottom_age bottom_depth min_water_depth max_water_depth lithology
 2.000 462.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 10.000 525.000 0.000 100.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 24.000 822.000 0.000 100.000 Shale 0.10 Limestone 0.80 Sand 0.10
 30.000 1062.000 0.000 100.000 Shale 0.30 Limestone 0.55 Dolostone 0.05 Sand 0.10
 34.000 1086.000 0.000 100.000 Shale 0.20 Limestone 0.10 Sand 0.70
 45.000 1366.000 0.000 100.000 Shale 0.10 Limestone 0.75 Dolostone 0.05 Sand 0.10
 58.000 1442.000 0.000 100.000 Shale 0.15 Limestone 0.15 Sand 0.70
 68.000 1494.000 50.000 200.000 Shale 0.45 Limestone 0.50 Sand 0.05
 83.000 1521.000 20.000 200.000 Shale 0.30 Limestone 0.65 Sand 0.05
 86.000 1545.000 20.000 200.000 Shale 0.55 Limestone 0.35 Sand 0.10
 88.000 1582.000 20.000 200.000 Shale 0.35 Limestone 0.65
 90.000 1620.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 95.000 1890.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 100.000 2036.000 20.000 200.000 Shale 0.70 Limestone 0.15 Sand 0.15
 107.000 2062.000 20.000 200.000 Shale 0.64 Limestone 0.18 Sand 0.18
 125.000 2066.000 0.000 100.000 Shale 0.40 Chalk 0.10 Sand 0.50
 160.000 2068.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 165.000 2130.000 0.000 100.000 Shale 0.40 Limestone 0.30 Sand 0.30
 170.000 2176.000 0.000 100.000 Shale 0.50 Sand 0.50
 177.000 2187.000 -10.000 25.000 Shale 0.30 Sand 0.70
 180.000 2237.000 -10.000 25.000 Shale 0.30 Sand 0.70
 190.000 2311.000 -10.000 20.000 Shale 0.30 Sand 0.70

Note

No extra base sediment layer is added from the bottom of the
drill site (2311 metres) to the total sediment thickness at the drill site (1298.15 metres),
because the former (bottom of drill site) is already deeper than the latter (total sediment thickness).
This happens because the default total sediment thickness grid is not
as accurate near continental margins (compared to deeper ocean basins).

Decompacted output

The decompacted output file:

SiteLatitude = -9.5901
SiteLongitude = 128.1538
SurfaceAge = 0.0000
#
age compacted_depth compacted_thickness decompacted_thickness decompacted_density decompacted_sediment_rate decompacted_depth min_tectonic_subsidence max_tectonic_subsidence average_tectonic_subsidence min_water_depth max_water_depth average_water_depth lithology
 0.000 0.000 2311.000 2311.000 2089.479 245.712 0.000 1236.930 1336.930 1286.930 0.000 100.000 50.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 2.000 462.000 1849.000 1984.750 2057.304 8.922 491.425 1038.610 1138.610 1088.610 0.000 100.000 50.000 Shale 0.20 Limestone 0.75 Dolostone 0.05
 10.000 525.000 1786.000 1936.640 2052.112 24.613 562.801 956.290 1056.290 1006.290 0.000 100.000 50.000 Shale 0.10 Limestone 0.80 Sand 0.10
 24.000 822.000 1489.000 1703.149 2018.885 50.826 907.389 846.332 946.332 896.332 0.000 100.000 50.000 Shale 0.30 Limestone 0.55 Dolostone 0.05 Sand 0.10
 30.000 1062.000 1249.000 1493.707 1994.320 7.743 1212.348 678.295 778.295 728.295 0.000 100.000 50.000 Shale 0.20 Limestone 0.10 Sand 0.70
 34.000 1086.000 1225.000 1472.172 1991.762 32.462 1243.321 653.467 753.467 703.467 0.000 100.000 50.000 Shale 0.10 Limestone 0.75 Dolostone 0.05 Sand 0.10
 45.000 1366.000 945.000 1223.986 1937.093 7.857 1600.399 515.129 615.129 565.129 0.000 100.000 50.000 Shale 0.15 Limestone 0.15 Sand 0.70
 58.000 1442.000 869.000 1153.349 1921.307 7.583 1702.542 546.589 696.589 621.589 50.000 200.000 125.000 Shale 0.45 Limestone 0.50 Sand 0.05
 68.000 1494.000 817.000 1100.849 1911.363 2.517 1778.370 443.659 623.659 533.659 20.000 200.000 110.000 Shale 0.30 Limestone 0.65 Sand 0.05
 83.000 1521.000 790.000 1074.658 1904.627 12.270 1816.128 439.905 619.905 529.905 20.000 200.000 110.000 Shale 0.55 Limestone 0.35 Sand 0.10
 86.000 1545.000 766.000 1049.084 1900.276 26.459 1852.938 423.355 603.355 513.355 20.000 200.000 110.000 Shale 0.35 Limestone 0.65
 88.000 1582.000 729.000 1012.260 1890.539 31.590 1905.856 388.195 568.195 478.195 20.000 200.000 110.000 Shale 0.70 Limestone 0.15 Sand 0.15
 90.000 1620.000 691.000 968.032 1884.877 92.186 1969.037 343.109 523.109 433.109 20.000 200.000 110.000 Shale 0.70 Limestone 0.15 Sand 0.15
 95.000 1890.000 421.000 625.158 1845.618 51.506 2429.968 160.243 340.243 250.243 20.000 200.000 110.000 Shale 0.70 Limestone 0.15 Sand 0.15
 100.000 2036.000 275.000 412.490 1835.863 6.452 2687.497 111.343 291.343 201.343 20.000 200.000 110.000 Shale 0.64 Limestone 0.18 Sand 0.18
 107.000 2062.000 249.000 373.048 1835.892 0.375 2732.658 109.605 209.605 159.605 0.000 100.000 50.000 Shale 0.40 Chalk 0.10 Sand 0.50
 125.000 2066.000 245.000 367.097 1835.856 0.090 2739.405 145.550 245.550 195.550 0.000 100.000 50.000 Shale 0.40 Limestone 0.30 Sand 0.30
 160.000 2068.000 243.000 364.308 1835.425 19.655 2742.563 198.479 298.479 248.479 0.000 100.000 50.000 Shale 0.40 Limestone 0.30 Sand 0.30
 165.000 2130.000 181.000 276.308 1821.056 15.434 2840.839 117.435 217.435 167.435 0.000 100.000 50.000 Shale 0.50 Sand 0.50
 170.000 2176.000 135.000 205.283 1822.654 2.458 2918.011 116.777 151.777 134.277 -10.000 25.000 7.500 Shale 0.30 Sand 0.70
 177.000 2187.000 124.000 189.178 1820.541 26.161 2935.218 133.251 168.251 150.751 -10.000 25.000 7.500 Shale 0.30 Sand 0.70
 180.000 2237.000 74.000 114.644 1810.669 11.696 3013.701 74.454 104.454 89.454 -10.000 20.000 5.000 Shale 0.30 Sand 0.70
 190.000 2311.000 0.000 0.000 0.000 0.000 3130.665 -10.000 20.000 5.000 -10.000 20.000 5.000 Shale 1.00

The age, compacted_depth, min_water_depth, max_water_depth and lithology columns are the same as the bottom_age, bottom_depth,
min_water_depth, max_water_depth and lithology columns in the input drill site (except there is also a row associated with the surface age).

The compacted_thickness column is the bottom depth of the drill site (2311 metres - noting that there is no base sediment layer in the
amended drill site above) minus compacted_depth.
The decompacted_thickness column is the thickness of all sediment at the associated age. In other words, at each consecutive age
another stratigraphic layer is essentially removed, allowing the underlying layers to expand (due to their porosity). At present day
(or the surface age) the decompacted thickness is just the compacted thickness. And note that because no extra
base sediment layer was added to the bottom of the drill site (2311 metres) the thickness and density is zero there.
The decompacted_density column is the average density integrated over the decompacted thickness of the drill site (each stratigraphic layer contains
a mixture of water and sediment according to its porosity at the decompacted depth of the layer). The decompacted_sediment_rate column is the rate of
sediment deposition in units of metres/Ma. At each time it is calculated as the fully decompacted thickness (ie, using surface porosity only) of the
surface stratigraphic layer (whose deposition ends at the specified time) divided by the layer’s deposition time interval. The decompacted_depth column is
similar to decompacted_sediment_rate in that the stratigraphic layers are fully decompacted (using surface porosity only) as if no portion of any layer had
ever been buried. It is also similar to compacted_depth except all effects of compaction have been removed.

Finally, average_water_depth is just the average min_water_depth and max_water_depth. And min_tectonic_subsidence, max_tectonic_subsidence and
average_tectonic_subsidence are obtained from min_water_depth and max_water_depth and average_water_depth by adding an isostatic correction of the
decompacted sediment thickness (to obtain the deeper isostatically compensated, sediment-free water depth also known as tectonic subsidence).

Note

The output columns are specified using the -d command-line option (run python -m pybacktrack.backstrip_cli --help to see all options), or
using the decompacted_columns argument of the pybacktrack.backstrip_and_write_well() function.
By default, only age and decompacted_thickness are output.

Sea level variation

A model of the variation of sea level relative to present day can optionally be used when backstripping.
This adjusts the isostatic correction of the decompacted sediment thickness to take into account sea-level variations.

There are two built-in sea level models bundled inside backstrip:

	Haq87_SealevelCurve - The Phanerozoic Record of Global Sea-Level Change [https://doi.org/10.1126/science.1116412]

	Haq87_SealevelCurve_Longterm - Normalised to start at zero at present-day.

A sea-level model is optional. If one is not specified then sea-level variation is assumed to be zero.

Note

A built-in sea-level model can be specified using the -slm command-line option (run python -m pybacktrack.backstrip_cli --help to see all options), or
using the sea_level_model argument of the pybacktrack.backstrip_and_write_well() function.

Note

It is also possible to specify your own sea-level model. This can be done by providing your own text file containing a column of ages (Ma) and a
corresponding column of sea levels (m), and specifying the name of this file to the -sl command-line option or to the sea_level_model argument
of the pybacktrack.backstrip_and_write_well() function.

Geohistory analysis

The Decompacting Stratigraphic Layers [https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb]
notebook shows how to visualize the decompaction of stratigraphic layers at a drill site.

Note

The example notebooks are installed as part of the example data which can be installed by following these instructions.

One of the examples in that notebook demonstrates decompaction of a shallow continental drill site using backstripping.
The paleo water depths (blue fill) are recorded in the drill site file and the tectonic subsidence (black dashed line) is backstripped using the paleo water depths and sediment decompaction.
Note that, unlike backtracking, dynamic topography does not affect tectonic subsidence
(because backstripping does not have a model of tectonic subsidence). So the image below is simply plotting dynamic topography alongside backstripped tectonic subsidence.

[image: _images/geohistory_DSDP-36-327.png]

Paleobathymetry

	Overview

	Running paleobathymetry

	Example

	Paleobathymetry output

	Paleobathymetry gridding procedure

	Builtin rift gridding procedure

Overview

The paleo_bathymetry module is used to generate paleo bathymetry grids by reconstructing and backtracking present-day sediment-covered crust through time.

Running paleobathymetry

You can either run paleo_bathymetry as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.paleo_bathymetry_cli ...

…or import pybacktrack into your own script, calling its functions and specifying parameters as function arguments (...):

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(...)

Note

You can run python -m pybacktrack.paleo_bathymetry_cli --help to see a description of all command-line options available, or
see the paleobathymetry reference section for documentation on the function parameters.

Example

To generate paleobathymetry NetCDF grids at 12 minute resolution from 0Ma to 240Ma in 1Myr increments, we can run it from the command-line as:

python -m pybacktrack.paleo_bathymetry_cli \
 -gm 12 \
 -ym M7 \
 -m GDH1 \
 --use_all_cpus \
 -- \
 240 paleo_bathymetry_12m_M7_GDH1

…where the -gm option specifies the grid spacing (12 minutes),
the -ym specifies the M7 dynamic topography model,
the -m option specifies the GDH1 oceanic subsidence model,
the --use_all_cpus option uses all CPUs (it also accepts an optional number of CPUs) and
the generated paleobathymetry grid files are named paleo_bathymetry_12m_M7_GDH1_<time>.nc.

…or write some Python code to do the same thing:

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(
 'paleo_bathymetry_12m_M7_GDH1',
 0.2, # degrees (same as 12 minutes)
 240,
 dynamic_topography_model='M7',
 ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_MODEL_GDH1,
 use_all_cpus=True) # can also be an integer (the number of CPUs to use)

Paleobathymetry output

The following shows two of the 241 paleobathymetry NetCDF grids generated by the example above. They’re both visualised in GPlates, the first at present day and the second at 60 Ma.

[image: _images/paleo_bathymetry_12m_M7_GDH1_0Ma.png]

[image: _images/paleo_bathymetry_12m_M7_GDH1_60Ma.png]

Also the Paleobathymetry [https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/paleobathymetry.ipynb] notebook has a similar example.

Note

The example notebooks are installed as part of the example data which can be installed by following these instructions.

Paleobathymetry gridding procedure

Paleobathymetry gridding uses the builtin rift start/end age grids along with the existing subsidence models (continental rifting and oceanic) and
the sediment decompaction functionality in pyBacktrack to generate paleo bathymetry grids (typically in 1 Myr intervals).

The paleo_bathymetry module has similar options to the backtrack module. Such as options for the present day grids containing age, bathymetry, crustal thickness and sediment thickness.
And options for the dynamic topography and sea level models. And the defaults for those options are the same as the backtrack module (except for the default lithology - see below).
For example, the paleo_bathymetry module defaults to the same present-day ETOPO1 bathymetry grid.

However the paleo_bathymetry module differs from the backtrack module in that, instead of a single point location for a drill site, a uniform grid of points containing sediment
(inside valid regions of the total sediment thickness grid) are backtracked to obtain gridded paleo water depths through time.

Note

Sediment grid points near trenches are excluded by default to avoid deep bathymetry areas near trenches appearing in the reconstructed grids.
Each trench has an exclusion distance on the subducting plate side (typically 60 kms) and an exlusion distance on the overriding plate side (typically 0 kms).
And these per-trench distances are all built into pyBacktrack. Any sediment grid points within these per-trench distances are excluded.
However this masking near trenches can be removed by specifying --exclude_distances_to_trenches_kms 0 0
(for example, in the paleo bathymetry example above).

As with regular backtracking, those sediment grid points lying inside the age grid (valid regions) use an oceanic subsidence model and those outside use a continental rifting model.
However, in lieu of explicitly providing the rift start and end ages (as for a 1D drill site) each 2D grid point samples the builtin rift start/end age grids.
Each grid point is also assigned a plate ID (using static polygons) and reconstructed back through time.

Each grid point has a single lithology, with an initial compacted thickness sampled from the total sediment thickness grid at present day that is progressively decompacted back through geological time.

Note

The single lithology defaults to Average_ocean_floor_sediment which is the average of the ocean floor sediment.
This differs from the base lithology of drill sites where the undrilled portions of drill sites are usually below the
Carbonate Compensation Depth (CCD) where shale dominates. Note that you can override the default lithology by specifying the -b command-line option.

The decompaction progresses incrementally (eg, in 1 Myr intervals) assuming a constant (average) decompacted sedimentation rate over the entire sedimentation period calculated as the fully decompacted initial thickness
(ie, using surface porosity only) divided by the sedimentation period (from start of rifting for continental crust, and from crustal age for oceanic crust, to present day).
Loading each reconstructed point’s decompacted thicknesses onto its modelled tectonic subsidence (oceanic or continental) back through time, along with the effects of dynamic topography and sea level models, reveals its history of water depths.
Finally, the reconstructed locations of all grid points and their reconstructed bathymetries are combined, at each reconstruction time, to create a history of paleo bathymetry grids.

Note

The supplementary script pybacktrack/supplementary/merge_paleo_bathymetry_grids.py can preferentially merge paleobathymetry grids produced by pybacktrack with externally produced paleobathymetry grids.
This script first adds a user-specified dynamic topography to the external grids and then inserts only at grid locations not covered by the pybacktrack grids
(eg, the external grids may contain paleobathymetry on subducted crust that is not covered by the reconstructed present-day sediment-deposited crust generated by pybacktrack).
This script can be obtained by installing the supplementary scripts.

Builtin rift gridding procedure

PyBacktrack comes with two builtin grids containing rift start and end ages on submerged continental crust at 5 minute resolution.
This is used during paleobathymetry gridding to obtain the rift periods of gridded points on continental crust.
It is also used during regular backtracking to obtain the rift period of a drill site on continental crust (when it is not specified in the drill site file or on the command-line).

The rift grids cover all submerged continental crust, not just those areas that have undergone rifting.
Submerged continental crust is where the total sediment thickness grid contains valid values but the age grid does not (ie, submerged crust that is non oceanic).

The rift grids were generated with pybacktrack/supplementary/generate_rift_grids.py using the Müller 2019 deforming plate model:

	Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., and Gurnis, M. (2019),
A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, vol. 38, [https://doi.org/10.1029/2018TC005462].

Note

The rift generation script pybacktrack/supplementary/generate_rift_grids.py can be obtained by installing the supplementary scripts.

This paragraph gives a brief overview of rift gridding…
First, grid points on continental crust that have undergone extensional deformation (rifting) during their most recent deformation period have their rift start and end ages assigned
as the start and end of that most recent deformation period (for each grid point).
Next, grid points on continental crust that have undergone contractional deformation during their most recent deformation period have their rift periods set to default values (currently 200 to 0 Ma)
to model these complex areas with simple rifting (despite a rifting model no longer strictly applying).
So that covers the deforming grid points on continental crust.
Next, the non-deforming grid points on continental crust obtain their rift period from the nearest deforming grid points.
This ensures that all continental crust contains a rift period and hence can be used to generate paleobathymetry grids from all present day continental crust.
Finally, only those continental grid points that are submerged are stored in the final rift grids since we only need to backtrack submerged crust.

This paragraph gives a more detailed explanation of how deformation in particular is used in pybacktrack/supplementary/generate_rift_grids.py…
The script allows one to specify a total sediment thickness grid and an age grid (defaulting to those included with pyBacktrack).
Grid points are uniformly generated in longitude/latitude space on continental crust.
Next pyGPlates is used to load the Müller 2019 topological plate model (containing rigid plate polygons and deforming networks) and reconstruct these continental grid points on back through geological time.
Note that plate IDs do not need to be explicitly assigned in order to be able to reconstruct because recent functionality in pyGPlates, known as reconstructing by topologies, essentially continually assigns plate IDs
using the topological plate polygons and deforming networks while each grid point is reconstructed back through time.
This ensures the path of each grid point is correctly reconstructed through deforming regions so that we can correctly determine when it enters and exits a deforming region.
During this reconstruction each grid point is queried (at 1Myr intervals) whether it passes through a deforming network.
The time at which a reconstructed grid point first encounters a deforming network (going backward in time) becomes its potential rift end time.
Following that point further back in time we find when it first exits a deforming network (again going backward in time), which becomes its potential rift start time.
We also keep track of a crustal stretching factor through time for each grid point so we can distinguish between extensional and contractional deformation.

Reference

This section documents the Python functions and classes that make up the public interface of the pybacktrack package.

	Backtracking

	Summary

	Detail

	Backstripping

	Summary

	Detail

	Paleobathymetry

	Summary

	Detail

	Creating lithologies

	Summary

	Detail

	Decompacting well sites

	Reading and writing well files

	Summary

	Detail

	Compacted well

	Summary

	Detail

	Decompacted well

	Summary

	Detail

	Converting oceanic age to depth

	Summary

	Detail

	Continental rifting

	Summary

	Detail

	Dynamic topography

	Summary

	Detail

	Average sea level variations

	Summary

	Detail

	Converting stratigraphic depth to age

	Summary

	Detail

	Utilities

	Summary

	Detail

	Constants

	Bundle data

	Backtracking

	Backstripping

	Paleobathymetry

	Lithology

	Oceanic subsidence

The pybacktrack package has the __version__ attribute:

import pybacktrack

pybacktrack.__version__

Backtracking

Find decompacted total sediment thickness and water depth through time.

Summary

pybacktrack.backtrack_well() finds decompacted total sediment thickness and water depth for each age in a well.

pybacktrack.write_backtrack_well() writes decompacted parameters as columns in a text file.

pybacktrack.backtrack_and_write_well() both backtracks well and writes decompacted data.

Detail

	
pybacktrack.backtrack_well(well_filename, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME, topography_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME, total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME, dynamic_topography_model=None, sea_level_model=None, base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME, ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL, rifting_period=None, well_location=None, well_bottom_age_column=0, well_bottom_depth_column=1, well_lithology_column=2)

	Finds decompacted total sediment thickness and water depth for each age in a well.

	Parameters:

	
	well_filename (string) – Name of well text file.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	age_grid_filename (string, optional) – Age grid filename.
Used to obtain age of seafloor at well location.
Can be explicitly set to None if well site is known to be on continental crust
(and hence age grid should be ignored). Note that this is different than
not specifying a filename (since that will use the default bundled age grid).

	topography_filename (string, optional) – Topography filename.
Used to obtain water depth at well location.

	total_sediment_thickness_filename (string, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at well location.
Can be explicitly set to None if well site is known to be drilled to basement depth
(and hence total sediment thickness grid should be ignored). Note that this is different
than not specifying a filename (since that will use the default bundled total sediment thickness grid).

	crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at well location.

	dynamic_topography_model (string or tuple, optional) – Represents a time-dependent dynamic topography raster grid (in mantle frame).

Can be either:

	A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	A tuple containing the three elements (dynamic topography list filename, static polygon filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids (and associated times).
Each row in this list file should contain two columns.
First column containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).
The second tuple element is the filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to well location so it can be reconstructed.
The third tuple element is the filename of the rotation file associated with model.
Only the rotation file for static continents/oceans is needed (ie, deformation rotations not needed).

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	base_lithology_name (string, optional) – Lithology name of the stratigraphic unit at the base of the well (must be present in lithologies file).
The stratigraphic units in the well might not record the full depth of sedimentation.
The base unit covers the remaining depth from bottom of well to the total sediment thickness.
Defaults to Shale.

	ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to depth at well location
(if on ocean floor - not used for continental passive margin).
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	rifting_period (tuple, optional) – Optional time period of rifting (if on continental passive margin - not used for oceanic floor).
If specified then should be a 2-tuple (rift_start_age, rift_end_age) where rift_start_age can be None
(in which case rifting is considered instantaneous from a stretching point-of-view, not thermal).
If specified then overrides value in well file (and value from builtin rift start/end grids).
If well is on continental passive margin then at least rift end age should be specified either here or in well file, or
well location must be inside rifting region of builtin rift start/end grids, otherwise a ValueError exception will be raised.

	well_location (tuple, optional) – Optional location of well.
If not provided then is extracted from the well_filename file.
If specified then overrides value in well file.
If specified then must be a 2-tuple (longitude, latitude) in degrees.

	well_bottom_age_column (int, optional) – The column of well file containing bottom age. Defaults to 0.

	well_bottom_depth_column (int, optional) – The column of well file containing bottom depth. Defaults to 1.

	well_lithology_column (int, optional) – The column of well file containing lithology(s). Defaults to 2.

	Returns:

	
	pybacktrack.Well – The well read from well_filename.
It may also be amended with a base stratigraphic unit from the bottom of the well to basement.

	list of pybacktrack.DecompactedWell – The decompacted wells associated with the well.
There is one decompacted well per age, in same order (and ages) as the well units (youngest to oldest).

	Raises:

	
	ValueError – If lithology_column is not the largest column number (must be last column).

	ValueError – If well_location is not specified and the well location was not extracted from the well file.

	ValueError – If well is on continental passive margin but rift end age was not specified by user and was not extracted from well file,
 and well location was not inside rifting region of builtin rift start/end grids.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct
which column it should be read from.

The tectonic subsidence at each age (of decompacted wells) is added as a tectonic_subsidence attribute
to each decompacted well returned.

	
pybacktrack.write_backtrack_well(decompacted_wells, decompacted_wells_filename, well, well_attributes=None, decompacted_columns=[0, 1])

	write_backtrack_well(decompacted_wells, decompacted_wells_filename, well, well_attributes=None, decompacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS):
Write decompacted parameters as columns in a text file.

	Parameters:

	
	decompacted_wells (sequence of pybacktrack.DecompactedWell) – The decompacted wells returned by pybacktrack.backtrack_well().

	decompacted_wells_filename (string) – Name of output text file.

	well (pybacktrack.Well) – The well to extract metadata from.

	well_attributes (dict, optional) – Optional attributes in pybacktrack.Well object to write to well file metadata.
If specified then must be a dictionary mapping each attribute name to a metadata name.
For example, {'longitude' : 'SiteLongitude', 'latitude' : 'SiteLatitude'}.
will write well.longitude (if not None) to metadata ‘SiteLongitude’, etc.
Not that the attributes must exist in well (but can be set to None).

	decompacted_columns (list of columns, optional) – The decompacted columns (and their order) to output to decompacted_wells_filename.

Available columns are:

	pybacktrack.BACKTRACK_COLUMN_AGE

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

	pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

	Raises:

	
	ValueError – If an unrecognised value is encountered in decompacted_columns.

	ValueError – If pybacktrack.BACKTRACK_COLUMN_LITHOLOGY is specified in decompacted_columns but is not the last column.

	
pybacktrack.backtrack_and_write_well(decompacted_output_filename, well_filename, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME, topography_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME, total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME, dynamic_topography_model=None, sea_level_model=None, base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME, ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL, rifting_period=None, decompacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS, well_location=None, well_bottom_age_column=0, well_bottom_depth_column=1, well_lithology_column=2, ammended_well_output_filename=None)

	Same as pybacktrack.backtrack_well() but also writes decompacted results to a text file.

Also optionally write amended well data (ie, including extra stratigraphic base unit from well bottom to ocean basement)
to ammended_well_output_filename if specified.

	Parameters:

	
	decompacted_output_filename (string) – Name of text file to write decompacted results to.

	well_filename (string) – Name of well text file.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	age_grid_filename (string, optional) – Age grid filename.
Used to obtain age of seafloor at well location.
Can be explicitly set to None if well site is known to be on continental crust
(and hence age grid should be ignored). Note that this is different than
not specifying a filename (since that will use the default bundled age grid).

	topography_filename (string, optional) – Topography filename.
Used to obtain water depth at well location.

	total_sediment_thickness_filename (string, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at well location.
Can be explicitly set to None if well site is known to be drilled to basement depth
(and hence total sediment thickness grid should be ignored). Note that this is different
than not specifying a filename (since that will use the default bundled total sediment thickness grid).

	crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at well location.

	dynamic_topography_model (string or tuple, optional) – Represents a time-dependent dynamic topography raster grid.
Currently only used for oceanic floor (ie, well location inside age grid)
it is not used if well is on continental crust (passive margin).

Can be either:

	A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	A tuple containing the three elements (dynamic topography list filename, static polygon filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids (and associated times).
Each row in this list file should contain two columns.
First column containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).
The second tuple element is the filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to well location so it can be reconstructed.
The third tuple element is the filename of the rotation file associated with model.
Only the rotation file for static continents/oceans is needed (ie, deformation rotations not needed).

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	base_lithology_name (string, optional) – Lithology name of the stratigraphic unit at the base of the well (must be present in lithologies file).
The stratigraphic units in the well might not record the full depth of sedimentation.
The base unit covers the remaining depth from bottom of well to the total sediment thickness.
Defaults to Shale.

	ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to depth at well location
(if on ocean floor - not used for continental passive margin).
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	rifting_period (tuple, optional) – Optional time period of rifting (if on continental passive margin - not used for oceanic floor).
If specified then should be a 2-tuple (rift_start_age, rift_end_age) where rift_start_age can be None
(in which case rifting is considered instantaneous from a stretching point-of-view, not thermal).
If specified then overrides value in well file (and value from builtin rift start/end grids).
If well is on continental passive margin then at least rift end age should be specified either here or in well file, or
well location must be inside rifting region of builtin rift start/end grids, otherwise a ValueError exception will be raised.

	decompacted_columns (list of columns, optional) – The decompacted columns (and their order) to output to decompacted_wells_filename.

Available columns are:

	pybacktrack.BACKTRACK_COLUMN_AGE

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

	pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

	well_location (tuple, optional) – Optional location of well.
If not provided then is extracted from the well_filename file.
If specified then overrides value in well file.
If specified then must be a 2-tuple (longitude, latitude) in degrees.

	well_bottom_age_column (int, optional) – The column of well file containing bottom age. Defaults to 0.

	well_bottom_depth_column (int, optional) – The column of well file containing bottom depth. Defaults to 1.

	well_lithology_column (int, optional) – The column of well file containing lithology(s). Defaults to 2.

	ammended_well_output_filename (string, optional) – Amended well data filename. Useful if an extra stratigraphic base unit is added from well bottom to ocean basement.

	Raises:

	
	ValueError – If lithology_column is not the largest column number (must be last column).

	ValueError – If well_location is not specified and the well location was not extracted from the well file.

	ValueError – If well is on continental passive margin but rift end age was not specified by user and was not extracted from well file,
 and well location was not inside rifting region of builtin rift start/end grids.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct
which column it should be read from.

Backstripping

Find decompacted total sediment thickness and tectonic subsidence through time.

Summary

pybacktrack.backstrip_well() finds decompacted total sediment thickness and tectonic subsidence for each age in a well.

pybacktrack.write_backstrip_well() writes decompacted parameters as columns in a text file.

Detail

	
pybacktrack.backstrip_well(well_filename, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, sea_level_model=None, base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME, well_location=None, well_bottom_age_column=0, well_bottom_depth_column=1, well_min_water_depth_column=2, well_max_water_depth_column=3, well_lithology_column=4)

	Finds decompacted total sediment thickness and tectonic subsidence for each age in well.

	Parameters:

	
	well_filename (str) – Name of well text file.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	total_sediment_thickness_filename (str, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at well location.
Can be explicitly set to None if well site is known to be drilled to basement depth
(and hence total sediment thickness grid should be ignored). Note that this is different
than not specifying a filename (since that will use the default bundled total sediment thickness grid).

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	base_lithology_name (string, optional) – Lithology name of the stratigraphic unit at the base of the well (must be present in lithologies file).
The stratigraphic units in the well might not record the full depth of sedimentation.
The base unit covers the remaining depth from bottom of well to the total sediment thickness.
Defaults to Shale.

	well_location (tuple, optional) – Optional location of well.
If not provided then is extracted from the well_filename file.
If specified then overrides value in well file.
If specified then must be a 2-tuple (longitude, latitude) in degrees.

	well_bottom_age_column (int, optional) – The column of well file containing bottom age. Defaults to 0.

	well_bottom_depth_column (int, optional) – The column of well file containing bottom depth. Defaults to 1.

	well_min_water_depth_column (int, optional) – The column of well file containing minimum water depth. Defaults to 2.

	well_max_water_depth_column (int, optional) – The column of well file containing maximum water depth. Defaults to 3.

	well_lithology_column (int, optional) – The column of well file containing lithology(s). Defaults to 4.

	Returns:

	
	pybacktrack.Well – The well read from well_filename.
It may also be amended with a base stratigraphic unit from the bottom of the well to basement.

	list of pybacktrack.DecompactedWell – The decompacted wells associated with the well.
There is one decompacted well per age, in same order (and ages) as the well units (youngest to oldest).

	Raises:

	
	ValueError – If well_lithology_column is not the largest column number (must be last column).

	ValueError – If well_location is not specified and the well location was not extracted from the well file.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct
which column it should be read from.

The min/max paleo water depths at each age (of decompacted wells) are added as
min_water_depth and max_water_depth attributes to each decompacted well returned.

	
pybacktrack.write_backstrip_well(decompacted_wells, decompacted_wells_filename, well, well_attributes=None, decompacted_columns=[0, 1])

	write_backstrip_well(decompacted_wells, decompacted_wells_filename, well, well_attributes=None, decompacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS):
Write decompacted parameters as columns in a text file.

	Parameters:

	
	decompacted_wells (sequence of pybacktrack.DecompactedWell) – The decompacted wells returned by pybacktrack.backstrip_well().

	decompacted_wells_filename (string) – Name of output text file.

	well (pybacktrack.Well) – The well to extract metadata from.

	well_attributes (dict, optional) – Optional attributes in pybacktrack.Well object to write to well file metadata.
If specified then must be a dictionary mapping each attribute name to a metadata name.
For example, {'longitude' : 'SiteLongitude', 'latitude' : 'SiteLatitude'}.
will write well.longitude (if not None) to metadata ‘SiteLongitude’, etc.
Not that the attributes must exist in well (but can be set to None).

	decompacted_columns (list of columns, optional) – The decompacted columns (and their order) to output to decompacted_wells_filename.

Available columns are:

	pybacktrack.BACKSTRIP_COLUMN_AGE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

	Raises:

	
	ValueError – If an unrecognised value is encountered in decompacted_columns.

	ValueError – If pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY is specified in decompacted_columns but is not the last column.

	
pybacktrack.backstrip_and_write_well(decompacted_output_filename, well_filename, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, sea_level_model=None, base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME, decompacted_columns=DEFAULT_DECOMPACTED_COLUMNS, well_location=None, well_bottom_age_column=0, well_bottom_depth_column=1, well_min_water_depth_column=2, well_max_water_depth_column=3, well_lithology_column=4, ammended_well_output_filename=None)

	Same as pybacktrack.backstrip_well() but also writes decompacted results to a text file.

Also optionally write amended well data (ie, including extra stratigraphic base unit from well bottom to ocean basement)
to ammended_well_output_filename if specified.

	Parameters:

	
	decompacted_output_filename (string) – Name of text file to write decompacted results to.

	well_filename (string) – Name of well text file.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	total_sediment_thickness_filename (string, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at well location.

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	base_lithology_name (string, optional) – Lithology name of the stratigraphic unit at the base of the well (must be present in lithologies file).
The stratigraphic units in the well might not record the full depth of sedimentation.
The base unit covers the remaining depth from bottom of well to the total sediment thickness.
Defaults to Shale.

	decompacted_columns (list of columns, optional) – The decompacted columns (and their order) to output to decompacted_wells_filename.

Available columns are:

	pybacktrack.BACKSTRIP_COLUMN_AGE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

	well_location (tuple, optional) – Optional location of well.
If not provided then is extracted from the well_filename file.
If specified then overrides value in well file.
If specified then must be a 2-tuple (longitude, latitude) in degrees.

	well_bottom_age_column (int, optional) – The column of well file containing bottom age. Defaults to 0.

	well_bottom_depth_column (int, optional) – The column of well file containing bottom depth. Defaults to 1.

	well_min_water_depth_column (int, optional) – The column of well file containing minimum water depth. Defaults to 2.

	well_max_water_depth_column (int, optional) – The column of well file containing maximum water depth. Defaults to 3.

	well_lithology_column (int, optional) – The column of well file containing lithology(s). Defaults to 4.

	ammended_well_output_filename (string, optional) – Amended well data filename. Useful if an extra stratigraphic base unit is added from well bottom to ocean basement.

	Raises:

	
	ValueError – If well_lithology_column is not the largest column number (must be last column).

	ValueError – If well_location is not specified and the well location was not extracted from the well file.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct
which column it should be read from.

The min/max paleo water depths at each age (of decompacted wells) are added as
min_water_depth and max_water_depth attributes to each decompacted well returned.

Paleobathymetry

Generate paleo bathymetry grids through time.

Summary

pybacktrack.generate_lon_lat_points() generates a global grid of points uniformly spaced in longitude and latitude.

pybacktrack.reconstruct_paleo_bathymetry() reconstructs and backtracks sediment-covered crust through time to get paleo bathymetry.

pybacktrack.write_paleo_bathymetry_grids() grid paleo bathymetry into NetCDF grids files.

pybacktrack.reconstruct_paleo_bathymetry_grids() generates a global grid of points, reconstructs/backtracks their bathymetry and writes paleo bathymetry grids.

Detail

	
pybacktrack.generate_lon_lat_points(grid_spacing_degrees)

	Generates a global grid of points uniformly spaced in longitude and latitude.

	Parameters:

	grid_spacing_degrees (float) – Spacing between points (in degrees).

	Return type:

	list of (longitude, latitude) tuples

	Raises:

	ValueError – If grid_spacing_degrees is negative or zero.

Notes

Longitudes start at -180 (dateline) and latitudes start at -90.
If 180 is an integer multiple of grid_spacing_degrees then the final longitude is also on the dateline (+180).

New in version 1.4.

	
pybacktrack.reconstruct_paleo_bathymetry(input_points, oldest_time=None, time_increment=1, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME, topography_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME, total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME, rotation_filenames=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES, static_polygon_filename=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME, dynamic_topography_model=None, sea_level_model=None, lithology_name=pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME, ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL, exclude_distances_to_trenches_kms=None, region_plate_ids=None, anchor_plate_id=0, output_positive_bathymetry_below_sea_level=False, use_all_cpus=False)

	Reconstructs and backtracks sediment-covered crust through time to get paleo bathymetry.

	Parameters:

	
	input_points (sequence of (longitude, latitude) tuples) – The point locations to sample bathymetry at present day.
Note that any samples outside the masked region of the total sediment thickness grid are ignored.

	oldest_time (float, optional) – The oldest time (in Ma) that output is generated back to (from present day). Value must not be negative.
If not specified then the oldest of oceanic crustal ages (for those input points on oceanic crust) and rift start ages
(for those input points on continental crust) is used instead.

	time_increment (float) – The time increment (in My) that output is generated (from present day back to oldest time). Value must be positive.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	age_grid_filename (string, optional) – Age grid filename.
Used to obtain age of oceanic crust at present day.
Crust is oceanic at locations inside masked age grid region, and continental outside.

	topography_filename (string, optional) – Topography filename.
Used to obtain bathymetry at present day.

	total_sediment_thickness_filename (string, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at present day.

	crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at present day.

	rotation_filenames (list of string, optional) – List of filenames containing rotation features (to reconstruct sediment-deposited crust).
If not specified then defaults to the built-in global rotations associated with the topological model
used to generate the built-in rift start/end time grids.

	static_polygon_filename (string, optional) – Filename containing static polygon features (to assign plate IDs to points on sediment-deposited crust).
If not specified then defaults to the built-in static polygons associated with the topological model
used to generate the built-in rift start/end time grids.

	dynamic_topography_model (string or tuple, optional) – Represents a time-dependent dynamic topography raster grid (in mantle frame).

Can be either:

	A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	A tuple containing the three elements (dynamic topography list filename, static polygon filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids (and associated times).
Each row in this list file should contain two columns.
First column containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).
The second tuple element is the filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to a location so it can be reconstructed.
The third tuple element is the filename of the rotation file associated with model.
Only the rotation file for static continents/oceans is needed (ie, deformation rotations not needed).

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	lithology_name (string, optional) – Lithology name of the all sediment (must be present in lithologies file).
The total sediment thickness at all sediment locations consists of a single lithology.
Defaults to Average_ocean_floor_sediment.

	ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to depth at a location
(if on ocean floor - not used for continental passive margin).
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	exclude_distances_to_trenches_kms (2-tuple of float, optional) – The two distances to present-day trenches (on subducting and overriding sides, in that order) to exclude bathymetry grid points (in kms), or
None to use built-in per-trench defaults. Default is None.

	region_plate_ids (list of int, optional) – Plate IDs of one or more plates to restrict paleobathymetry reconstruction to.
Defaults to global.

	anchor_plate_id (int, optional) – The anchor plate id used when reconstructing paleobathymetry grid points. Defaults to zero.

	output_positive_bathymetry_below_sea_level (bool, optional) – Whether to output positive bathymetry values below sea level (the same as backtracked water depths at a drill site).
However topography/bathymetry grids typically have negative values below sea level (and positive above).
So the default (False) matches typical topography/bathymetry grids (ie, outputs negative bathymetry values below sea level).

	use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores).
If a positive integer then use that many CPUs (cores).
Defaults to False (single CPU).

	Returns:

	The reconstructed paleo bathymetry points from present day to the oldest time (see oldest_time) in increments of time_increment.
Each key in the returned dict is one of those times and each value in the dict is a list of reconstructed paleo bathymetries
represented as a 3-tuple containing reconstructed longitude, reconstructed latitude and paleo bathmetry.

	Return type:

	dict mapping each time to a list of 3-tuple (longitude, latitude, bathymetry)

	Raises:

	ValueError – If oldest_time is negative (if specified) or if time_increment is not positive.

Notes

The output paleo bathymetry values are negative below sea level by default.
Note that this is the inverse of water depth (which is positive below sea level).

Any input points outside the masked region of the total sediment thickness grid are ignored (since bathymetry relies on sediment decompaction over time).

New in version 1.4.

Changed in version 1.5: oldest_time no longer needs to be specified (defaults to oldest of ocean crust ages and continental rift start ages of input points).

	
pybacktrack.write_paleo_bathymetry_grids(paleo_bathymetry, grid_spacing_degrees, output_file_prefix, output_xyz=False, use_all_cpus=False)

	Grid paleo bathymetry into a NetCDF grid for each time step.

	Parameters:

	
	paleo_bathymetry (dict) – A dict mapping each reconstructed time to a list of 3-tuple (longitude, latitude, bathymetry)
The reconstructed paleo bathymetry points over a sequence of reconstructed times.
Each key in the returned dict is one of those times and each value in the dict is a list of reconstructed paleo bathymetries
represented as a 3-tuple containing reconstructed longitude, reconstructed latitude and paleo bathmetry.

	grid_spacing_degrees (float) – Lat/lon grid spacing (in degrees). Ideally this should match the spacing of the input points used to generate the paleo bathymetries.

	output_file_prefix (string) – The prefix of the output paleo bathymetry grid filenames over time, with “_<time>.nc” appended.

	output_xyz (bool, optional) – Whether to also create a GMT xyz file (with “.xyz” extension) for each output paleo bathymetry grid.
Each row of each xyz file contains “longitude latitude bathymetry”.
Default is to only create grid files (no xyz).

	use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores).
If a positive integer then use that many CPUs (cores).
Defaults to False (single CPU).

Notes

New in version 1.4.

	
pybacktrack.reconstruct_paleo_bathymetry_grids(output_file_prefix, grid_spacing_degrees, oldest_time=None, time_increment=1, lithology_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME], age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME, topography_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME, total_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME, crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME, rotation_filenames=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES, static_polygon_filename=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME, dynamic_topography_model=None, sea_level_model=None, lithology_name=pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME, ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL, exclude_distances_to_trenches_kms=None, region_plate_ids=None, anchor_plate_id=0, output_positive_bathymetry_below_sea_level=False, output_xyz=False, use_all_cpus=False)

	Same as pybacktrack.reconstruct_paleo_bathymetry() but also generates present day input points on a lat/lon grid and
outputs paleobathymetry as a NetCDF grid for each time step.

	Parameters:

	
	output_file_prefix (string) – The prefix of the output paleo bathymetry grid filenames over time, with “_<time>.nc” appended.

	grid_spacing_degrees (float) – Spacing between lat/lon points (in degrees) to sample bathymetry at present day.
Note that any samples outside the masked region of the total sediment thickness grid are ignored.

	oldest_time (float, optional) – The oldest time (in Ma) that output is generated back to (from present day). Value must not be negative.
If not specified then the oldest of oceanic crustal ages (for those grid points on oceanic crust) and rift start ages
(for those grid points on continental crust) is used instead.

	time_increment (float) – The time increment (in My) that output is generated (from present day back to oldest time). Value must be positive.

	lithology_filenames (list of string, optional) – One or more text files containing lithologies.

	age_grid_filename (string, optional) – Age grid filename.
Used to obtain age of oceanic crust at present day.
Crust is oceanic at locations inside masked age grid region, and continental outside.

	topography_filename (string, optional) – Topography filename.
Used to obtain bathymetry at present day.

	total_sediment_thickness_filename (string, optional) – Total sediment thickness filename.
Used to obtain total sediment thickness at present day.

	crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at present day.

	rotation_filenames (list of string, optional) – List of filenames containing rotation features (to reconstruct sediment-deposited crust).
If not specified then defaults to the built-in global rotations associated with the topological model
used to generate the built-in rift start/end time grids.

	static_polygon_filename (string, optional) – Filename containing static polygon features (to assign plate IDs to points on sediment-deposited crust).
If not specified then defaults to the built-in static polygons associated with the topological model
used to generate the built-in rift start/end time grids.

	dynamic_topography_model (string or tuple, optional) – Represents a time-dependent dynamic topography raster grid (in mantle frame).

Can be either:

	A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	A tuple containing the three elements (dynamic topography list filename, static polygon filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids (and associated times).
Each row in this list file should contain two columns.
First column containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).
The second tuple element is the filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to a location so it can be reconstructed.
The third tuple element is the filename of the rotation file associated with model.
Only the rotation file for static continents/oceans is needed (ie, deformation rotations not needed).

	sea_level_model (string, optional) – Used to obtain sea levels relative to present day.
Can be either the name of a bundled sea level model, or a sea level filename.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	lithology_name (string, optional) – Lithology name of the all sediment (must be present in lithologies file).
The total sediment thickness at all sediment locations consists of a single lithology.
Defaults to Average_ocean_floor_sediment.

	ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to depth at a location
(if on ocean floor - not used for continental passive margin).
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	exclude_distances_to_trenches_kms (2-tuple of float, optional) – The two distances to present-day trenches (on subducting and overriding sides, in that order) to exclude bathymetry grid points (in kms), or
None to use built-in per-trench defaults. Default is None.

	region_plate_ids (list of int, optional) – Plate IDs of one or more plates to restrict paleobathymetry reconstruction to.
Defaults to global.

	anchor_plate_id (int, optional) – The anchor plate id used when reconstructing paleobathymetry grid points. Defaults to zero.

	output_positive_bathymetry_below_sea_level (bool, optional) – Whether to output positive bathymetry values below sea level (the same as backtracked water depths at a drill site).
However topography/bathymetry grids typically have negative values below sea level (and positive above).
So the default (False) matches typical topography/bathymetry grids (ie, outputs negative bathymetry values below sea level).

	output_xyz (bool, optional) – Whether to also create a GMT xyz file (with “.xyz” extension) for each output paleo bathymetry grid.
Each row of each xyz file contains “longitude latitude bathymetry”.
Default is to only create grid files (no xyz).

	use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores).
If a positive integer then use that many CPUs (cores).
Defaults to False (single CPU).

	Raises:

	ValueError – If oldest_time is negative (if specified) or if time_increment is not positive.

Notes

The output paleo bathymetry grids have negative values below sea level by default.
Note that this is the inverse of water depth (which is positive below sea level).

Any input points outside the masked region of the total sediment thickness grid are ignored (since bathymetry relies on sediment decompaction over time).

New in version 1.4.

Changed in version 1.5: oldest_time no longer needs to be specified (defaults to oldest of ocean crust ages and continental rift start ages of grid points).

Creating lithologies

Create lithologies or read them from file(s).

Summary

pybacktrack.Lithology is a class containing data for a lithology.

pybacktrack.read_lithologies_file() reads lithologies from a text file.

pybacktrack.read_lithologies_files() reads and merges lithologies from one or more text files.

pybacktrack.create_lithology() creates a lithology by looking up a name in a dictionary of lithologies.

pybacktrack.create_lithology_from_components() creates a lithology by combining multiple lithologies using different weights.

Detail

	
class pybacktrack.Lithology(density, surface_porosity, porosity_decay)

	Class containing lithology data.

	
__init__(density, surface_porosity, porosity_decay)

	Create a lithology from density, surface porosity and porosity decay.

	Parameters:

	
	density (float) – Density (in kg/m3).

	surface_porosity (float) – Surface porosity (unit-less).

	porosity_decay (float) – Porosity decay (in metres).

	
pybacktrack.read_lithologies_file(lithologies_filename)

	Reads a text file with each row representing lithology parameters.

	Parameters:

	lithologies_filename (str) – Filename of the lithologies text file.

	Returns:

	Dictionary mapping lithology names to pybacktrack.Lithology objects.

	Return type:

	dict

Notes

The four parameter columns in the lithologies text file should contain:

	name

	density

	surface_porosity

	porosity_decay

	
pybacktrack.read_lithologies_files(lithologies_filenames)

	Reads each lithologies text file in the sequence and merges their lithologies.

	Parameters:

	lithologies_filenames (sequence of str) – Filenames of the lithologies text files.

	Returns:

	Dictionary mapping lithology names to pybacktrack.Lithology objects.

	Return type:

	dict

Notes

The four parameter columns in each lithologies text file should contain:

	name

	density

	surface_porosity

	porosity_decay

The order of filenames is important. If a lithology name exists in multiple files
but has different definitions (values for density, surface porosity and porosity decay) then
the definition in the last file containing the lithology name is used.

New in version 1.2.

	
pybacktrack.create_lithology(lithology_name, lithologies)

	Looks up a lithology using a name.

	Parameters:

	
	lithology_name (str) – The name of the lithology to look up.

	lithologies (dict) – A dictionary mapping lithology names to pybacktrack.Lithology objects.

	Returns:

	The lithology matching lithology_name.

	Return type:

	pybacktrack.Lithology

	Raises:

	KeyError – If lithology_name is not found in lithologies.

	
pybacktrack.create_lithology_from_components(components, lithologies)

	Creates a combined lithology (if necessary) from multiple weighted lithologies.

	Parameters:

	
	components (sequence of tuples) – A sequence (eg, list) of tuples (str, float) containing a lithology name and its fraction of contribution.

	lithologies (dict) – A dictionary mapping lithology names to pybacktrack.Lithology objects.

	Returns:

	The combined lithology.

	Return type:

	pybacktrack.Lithology

	Raises:

	
	ValueError – If all fractions do not add up to 1.0.

	KeyError – If a lithology name is not found in lithologies.

Decompacting well sites

	Read/write well site files,

	query a well and its stratigraphic layers, and

	query decompacted sections at past times.

Reading and writing well files

Read/write well site files.

Summary

pybacktrack.read_well_file() reads a text file with each row representing a stratigraphic unit.

pybacktrack.write_well_file() writes a text file with each row representing a stratigraphic unit.

pybacktrack.write_well_metadata() writes well metadata to a text file.

Detail

	
pybacktrack.read_well_file(well_filename, lithologies, bottom_age_column=0, bottom_depth_column=1, lithology_column=2, other_columns=None, well_attributes=None)

	Reads a text file with each row representing a stratigraphic unit.

	Parameters:

	
	well_filename (str) – Name of well text file.

	lithologies (dict) – Dictionary mapping lithology names to pybacktrack.Lithology objects.

	well_bottom_age_column (int, optional) – The column of well file containing bottom age. Defaults to 0.

	well_bottom_depth_column (int, optional) – The column of well file containing bottom depth. Defaults to 1.

	well_lithology_column (int, optional) – The column of well file containing lithology(s). Defaults to 2.

	other_columns (dict, optional) – Dictionary of extra columns (besides age, depth and lithology(s)).
Each dict value should be a column index (to read from file), and each associated dict key
should be a string that will be the name of an attribute (added to each pybacktrack.StratigraphicUnit
object in the returned pybacktrack.Well) containing the value read.
For example, backstripping will add min_water_depth and max_water_depth attributes
(when pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called,
which in turn calls this function).

	well_attributes (dict, optional) – Attributes to read from well file metadata and store in returned pybacktrack.Well object.
If specified then must be a dictionary mapping each metadata name to a 2-tuple containing
attribute name and a function to convert attribute string to attribute value.
For example, {‘SiteLongitude’ : (‘longitude’, float), ‘SiteLatitude’ : (‘latitude’, float)}
will look for metadata name ‘SiteLongitude’ and store a float value in Well.longitude
(or None if not found), etc.
Each metadata not found in well file will store None in the associated attribute of pybacktrack.Well object.

	Returns:

	Well read from file.

	Return type:

	pybacktrack.Well

	Raises:

	ValueError – If lithology_column is not the largest column number (must be last column).

Notes

Each attribute to read (eg, bottom_age, bottom_depth, etc) has a column index to direct which column it should be read from.

If file contains SurfaceAge = <age> in commented (#) lines then the top age of the
youngest stratigraphic unit will have that age, otherwise it defaults to 0Ma (present day).

	
pybacktrack.write_well_file(well, well_filename, other_column_attribute_names=None, well_attributes=None)

	Writes a text file with each row representing a stratigraphic unit.

	Parameters:

	
	well (pybacktrack.Well) – The well to write.

	well_filename (str) – Name of well text file.

	other_column_attribute_names (sequence of str) – Names of any extra column attributes to write as column before the lithology(s) column.
For example, backstripping will add min_water_depth and max_water_depth attributes
(when pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called,
which in turn calls this function).

	well_attributes (dict, optional) – Attributes in pybacktrack.Well object to write to well file metadata.
If specified then must be a dictionary mapping each attribute name to a metadata name.
For example, {‘longitude’ : ‘SiteLongitude’, ‘latitude’ : ‘SiteLatitude’}
will write well.longitude (if not None) to metadata ‘SiteLongitude’, etc.
Not that the attributes must exist in well (but can be set to None).

	
pybacktrack.write_well_metadata(well_file, well, well_attributes=None)

	Writes well metadata to file object well_file.

	Parameters:

	
	well_file (file object) – Well file object to write to.

	well (pybacktrack.Well) – Well to extract metadata from.

	well_attributes (dict, optional) – Attributes in pybacktrack.Well object to write to well file metadata.
If specified then must be a dictionary mapping each attribute name to a metadata name.
For example, {‘longitude’ : ‘SiteLongitude’, ‘latitude’ : ‘SiteLatitude’}
will write well.longitude (if not None) to metadata ‘SiteLongitude’, etc.
Not that the attributes must exist in well (but can be set to None).

Compacted well

Query a well and its stratigraphic layers.

Summary

pybacktrack.Well is a class containing all stratigraphic units in a well.

pybacktrack.StratigraphicUnit is a class containing data for a stratigraphic unit.

Detail

	
class pybacktrack.Well(attributes=None, stratigraphic_units=None)

	Class containing all the stratigraphic units in a well sorted by age (from youngest to oldest).

	
longitude

	Longitude of the well location.

Note

This attribute is available provided pybacktrack.backtrack_well() or
pybacktrack.backstrip_well() (or any function calling them) have been called.

	Type:

	float, optional

	
latitude

	Latitude of the well location.

Note

This attribute is available provided pybacktrack.backtrack_well() or
pybacktrack.backstrip_well() (or any function calling them) have been called.

	Type:

	float, optional

	
stratigraphic_units

	List of stratigraphic units in this well sorted by age (from youngest to oldest).

	Type:

	list of pybacktrack.StratigraphicUnit

	
__init__(attributes=None, stratigraphic_units=None)

	Create a well from optional stratigraphic units.

	Parameters:

	
	attributes (dict, optional) – Attributes to store on this well object.
If specified then must be a dictionary mapping attribute names to values.

	stratigraphic_units (sequence of pybacktrack.StratigraphicUnit, optional) – Sequence of StratigraphicUnit objects.
They can be unsorted (by age) but will be added in sorted order.

	Raises:

	ValueError – If:

 #. Youngest unit does not have zero depth, or
 #. adjacent units do not have matching top and bottom ages and depths.

 …this ensures the units are contiguous in depth from the surface (ie, no gaps).

Notes

Stratigraphic units can also be added using pybacktrack.Well.add_compacted_unit()

	
add_compacted_unit(top_age, bottom_age, top_depth, bottom_depth, lithology_components, lithologies, other_attributes=None)

	Add the next deeper stratigraphic unit.

Units must be added in order of age.

	Parameters:

	
	top_age (float) – Age of top of stratigraphic unit (in Ma).

	bottom_age (float) – Age of bottom of stratigraphic unit (in Ma).

	top_depth (float) – Depth of top of stratigraphic unit (in metres).

	bottom_depth (float) – Depth of bottom of stratigraphic unit (in metres).

	lithology_components (sequence of tuples (str, float)) – Sequence of tuples (name, fraction) containing a lithology name and its fraction of contribution.

	lithologies (dict) – A dictionary mapping lithology names to pybacktrack.Lithology objects.

	other_attributes (dict, optional) – A dictionary of attribute name/value pairs to set on stratigraphic unit object (using setattr).
For example, backstripping will add the min_water_depth and max_water_depth attributes
(when pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called).

	Raises:

	ValueError – If:

 #. Youngest unit does not have zero depth, or
 #. adjacent units do not have matching top and bottom ages and depths.

 …this ensures the units are contiguous in depth from the surface (ie, no gaps).

	
decompact(age=None)

	Finds decompacted total sediment thickness at ‘age’ (if specified), otherwise at each (top) age in all stratigraphic units.

	Returns:

	If ‘age’ is specified then returns the decompacted well at that age (or None if ‘age’ is not younger than bottom age of well),
otherwise a list of decompacted wells with one per age in same order (and ages) as the well units (youngest to oldest).

	Return type:

	pybacktrack.DecompactedWell, or list of pybacktrack.DecompactedWell

Notes

Changed in version 1.4: Added the ‘age’ parameter.

	
class pybacktrack.StratigraphicUnit(top_age, bottom_age, top_depth, bottom_depth, lithology_components, lithologies, other_attributes=None)

	Class to hold data for a stratigraphic unit.

	
top_age

	Age of top of stratigraphic unit (in Ma).

	Type:

	float

	
bottom_age

	Age of bottom of stratigraphic unit (in Ma).

	Type:

	float

	
top_depth

	Depth of top of stratigraphic unit (in metres).

	Type:

	float

	
bottom_depth

	Depth of bottom of stratigraphic unit (in metres).

	Type:

	float

	
decompacted_top_depth

	Fully decompacted depth of top of stratigraphic unit (in metres) as if no portion of any layer had ever been buried (ie, using surface porosities only).

	Type:

	float

	
decompacted_bottom_depth

	Fully decompacted depth of bottom of stratigraphic unit (in metres) as if no portion of any layer had ever been buried (ie, using surface porosities only).

	Type:

	float

	
min_water_depth

	Minimum paleo-water depth of stratigraphic unit (in metres).

Note

This attribute is only available when backstripping (not backtracking).
For example, it is available if pybacktrack.backstrip_well() or
pybacktrack.backstrip_and_write_well() has been called.

	Type:

	float, optional

	
max_water_depth

	Maximum paleo-water depth of stratigraphic unit (in metres).

Note

This attribute is only available when backstripping (not backtracking).
For example, it is available if pybacktrack.backstrip_well() or
pybacktrack.backstrip_and_write_well() has been called.

	Type:

	float, optional

	
lithology_components

	Sequence of tuples (name, fraction) containing a lithology name and its fraction of contribution.

	Type:

	sequence of tuples (str, float)

	
__init__(top_age, bottom_age, top_depth, bottom_depth, lithology_components, lithologies, other_attributes=None)

	Create a stratigraphic unit from top and bottom age, top and bottom depth and lithology components.

	Parameters:

	
	top_age (float) – Age of top of stratigraphic unit (in Ma).

	bottom_age (float) – Age of bottom of stratigraphic unit (in Ma).

	top_depth (float) – Depth of top of stratigraphic unit (in metres).

	bottom_depth (float) – Depth of bottom of stratigraphic unit (in metres).

	lithology_components (sequence of tuples (str, float)) – Sequence of tuples (name, fraction) containing a lithology name and its fraction of contribution.

	lithologies (dict) – A dictionary mapping lithology names to pybacktrack.Lithology objects.

	other_attributes (dict, optional) – A dictionary of attribute name/value pairs to set on stratigraphic unit object (using setattr).
For example, backstripping will add the min_water_depth and max_water_depth attributes
(when pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called).

	
calc_decompacted_density(decompacted_thickness, decompacted_depth_to_top)

	Calculate average decompacted density when top of this stratigraphic unit is at a decompacted depth.

	Parameters:

	
	decompacted_thickness (float) – Decompacted thickness of this stratigraphic unit as returned by
pybacktrack.StratigraphicUnit.calc_decompacted_thickness().

	decompacted_depth_to_top (float) – Decompacted depth of the top of this stratigraphic unit.

	Returns:

	Decompacted density.

	Return type:

	float

	
calc_decompacted_thickness(decompacted_depth_to_top)

	Calculate decompacted thickness when top of this stratigraphic unit is at a decompacted depth.

	Parameters:

	decompacted_depth_to_top (float) – Decompacted depth of the top of this stratigraphic unit.

	Returns:

	Decompacted thickness.

	Return type:

	float

	
static create_partial_unit(unit, top_age)

	Create a new stratigraphic unit equivalent to ‘unit’ but with the top part stripped off according to ‘top_age’.

Essentially sediment deposited from ‘top_age’ to the top age of ‘unit’ is stripped off (assuming a constant sediment deposition rate for ‘unit’).
And so ‘top_age’ is expected to be older/earlier than the top age of ‘unit’ (and younger than the bottom age of ‘unit’).

	Parameters:

	top_age (float) – Top age of new stratigraphic unit.

	Raises:

	ValueError – If ‘top_age’ is outside the top/bottom age range of ‘unit’.

Notes

This does not partially decompact ‘unit’.
It is simply adjusting the top depth of new unit to correspond to its new top age.
Then when the returned partial stratigraphic unit is subsequently decompacted it’ll have the correct volume of grains
(assuming a constant sediment deposition rate) and hence be decompacted correctly at its new top age.

New in version 1.4.

	
get_decompacted_sediment_rate()

	Return fully decompacted sediment rate.

This is the fully decompacted thickness of this unit divided by its (deposition) time interval.

	Returns:

	Decompacted sediment rate (in units of metres/Ma).

	Return type:

	float

Notes

Fully decompacted is equivalent to assuming this unit is at the surface (ie, no units on top of it) and
porosity decay within the unit is not considered (in other words the weight of the upper part of the unit
does not compact the lower part of the unit).

	
get_fully_decompacted_thickness()

	Get fully decompacted thickness. It is calculated on first call.

	Returns:

	Fully decompacted thickness.

	Return type:

	float

Notes

Fully decompacted is equivalent to assuming this unit is at the surface (ie, no units on top of it) and
porosity decay within the unit is not considered (in other words the weight of the upper part of the unit
does not compact the lower part of the unit).

New in version 1.4.

Decompacted well

Query decompacted sections at past times.

Summary

pybacktrack.DecompactedWell is a class containing the decompacted well data at a specific age.

pybacktrack.DecompactedStratigraphicUnit is a class to hold data for a decompacted stratigraphic unit.

Detail

	
class pybacktrack.DecompactedWell(surface_unit)

	Class containing the decompacted well data at a specific age.

	
surface_unit

	Top stratigraphic unit in this decompacted well.

	Type:

	pybacktrack.StratigraphicUnit

	
total_compacted_thickness

	Total compacted thickness of all stratigraphic units.

	Type:

	float

	
total_decompacted_thickness

	Total decompacted thickness of all decompacted stratigraphic units.

	Type:

	float

	
tectonic_subsidence

	Tectonic subsidence (in metres).

Note

This attribute is only available when backtracking (not backstripping).
For example, it is available if pybacktrack.backtrack_well() or
pybacktrack.backtrack_and_write_well() has been called.

	Type:

	float, optional

	
min_water_depth

	Minimum water depth (in metres).

Note

This attribute is only available when backstripping (not backtracking).
For example, it is available if pybacktrack.backstrip_well() or
pybacktrack.backstrip_and_write_well() has been called.

New in version 1.2.

	Type:

	float, optional

	
max_water_depth

	Maximum water depth (in metres).

Note

This attribute is only available when backstripping (not backtracking).
For example, it is available if pybacktrack.backstrip_well() or
pybacktrack.backstrip_and_write_well() has been called.

New in version 1.2.

	Type:

	float, optional

	
sea_level

	Sea level in metres (positive for a sea-level rise and negative for a sea-level fall, relative to present day).

Note

This attribute is only available if a sea model was specified when backtracking or backstripping
(for example, if sea_level_model was specified in pybacktrack.backtrack_well() or
pybacktrack.backstrip_well()).

See also

pybacktrack.DecompactedWell.get_sea_level()

	Type:

	float, optional

	
dynamic_topography

	Dynamic topography elevation relative to present day (in metres).

Note

This attribute contains dynamic topography relative to present day.

Note

This attribute is only available when backtracking (not backstripping) and
if a dynamic topography model was specified. For example, it is available if
dynamic_topography_model was specified in pybacktrack.backtrack_well() or
pybacktrack.backtrack_and_write_well()

Note

Dynamic topography is elevation which is opposite to tectonic subsidence in that an
increase in dynamic topography results in a decrease in tectonic subsidence.

See also

pybacktrack.DecompactedWell.get_dynamic_topography()

New in version 1.2.

	Type:

	float, optional

	
decompacted_stratigraphic_units

	Decompacted stratigraphic units.
They are sorted from top to bottom (in depth) which is the same as youngest to oldest.

	Type:

	list of pybacktrack.DecompactedStratigraphicUnit

	
__init__(surface_unit)

	Create a decompacted well whose top stratigraphic unit is surface_unit.

	Parameters:

	surface_unit (pybacktrack.StratigraphicUnit) – Top stratigraphic unit in this decompacted well.

Notes

You still need to add the decompacted units with pybacktrack.DecompactedWell.add_decompacted_unit().

See also

pybacktrack.Well.decompact()

	
add_decompacted_unit(stratigraphic_unit, decompacted_thickness, decompacted_density)

	Add a decompacted stratigraphic unit.

	Parameters:

	
	stratigraphic_unit (pybacktrack.StratigraphicUnit) – Stratigraphic unit referenced by decompacted stratigraphic unit.

	decompacted_thickness (float) – Decompacted thickness.

	decompacted_density (float) – Decompacted density.

Notes

Stratigraphic units should be decompacted from top of well column to bottom.

	
get_age()

	
	Returns:

	Age of the surface of the decompacted column of the well.

	Return type:

	float

	
get_average_decompacted_density()

	
	Returns:

	Average density of the entire decompacted column of the well.

	Return type:

	float

	
get_dynamic_topography(default_dynamic_topography=0.0)

	Returns the dynamic topography elevation relative to present day, or default_dynamic_topography
if a dynamic topography model was not specified (when backtracking).

	Returns:

	Dynamic topography elevation relative to present day.

	Return type:

	float

Notes

Note

Returns dynamic topography relative to present day.

Returns the dynamic_topography attribute if a dynamic_topography_model was specified to
pybacktrack.backtrack_well() or pybacktrack.backtrack_and_write_well(),
otherwise returns default_dynamic_topography.

Note

Dynamic topography is elevation which is opposite to tectonic subsidence in that an
increase in dynamic topography results in a decrease in tectonic subsidence.

Note

default_dynamic_topography can be set to None

New in version 1.2.

	
get_min_max_tectonic_subsidence()

	Returns the minimum and maximum tectonic subsidence obtained directly from subsidence model (if backtracking) or
indirectly from minimum and maximum water depth and sea level (if backstripping).

	Returns:

	
	min_tectonic_subsidence (float) – Minimum tectonic subsidence (unloaded water depth) of this decompacted well.

	max_tectonic_subsidence (float) – Maximum tectonic subsidence (unloaded water depth) of this decompacted well.

Notes

When backtracking, the tectonic subsidence is obtained directly from the tectonic_subsidence attribute.
In this case the minimum and maximum tectonic subsidence are the same.

When backstripping, the tectonic subsidence is obtained indirectly from the min_water_depth and
max_water_depth attributes and optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

	
get_min_max_tectonic_subsidence_from_water_depth(min_water_depth, max_water_depth, sea_level=None)

	Returns the minimum and maximum tectonic subsidence obtained from specified minimum and maximum water depths (and optional sea level).

	Parameters:

	
	min_water_depth (float) – Minimum water depth.

	max_water_depth (float) – Maximum water depth.

	sea_level (float, optional) – Sea level relative to present day (positive to sea-level rise and negative for sea-level fall).

	Returns:

	
	min_tectonic_subsidence (float) – Minimum tectonic subsidence (unloaded water depth) of this decompacted well from its minimum water depth.

	max_tectonic_subsidence (float) – Maximum tectonic subsidence (unloaded water depth) of this decompacted well from its maximum water depth.

Notes

Optional sea level fluctuation is included if specified.

	
get_min_max_water_depth()

	Returns the minimum and maximum water depth obtained directly from minimum and maximum water depth (if backstripping) or
indirectly from tectonic subsidence model and sea level (if backtracking).

	Returns:

	
	min_water_depth (float) – Minimum water depth of this decompacted well.

	max_water_depth (float) – Maximum water depth of this decompacted well.

Notes

When backstripping, the minimum and maximum water depths are obtained directly from the
min_water_depth and max_water_depth attributes.

When backtracking, the water depth is obtained indirectly from the tectonic_subsidence attribute
and optional sea_level attribute (if a sea level model was specified).
In this case the minimum and maximum water depths are the same.

New in version 1.2.

	
get_sea_level(default_sea_level=0.0)

	Returns the sea level relative to present day, or default_sea_level if a sea level model
was not specified (when either backtracking or backstripping).

	Returns:

	Sea level relative to present day (positive to sea-level rise and negative for sea-level fall).

	Return type:

	float

Notes

Returns the sea_level attribute if a sea_level_model was specified to
pybacktrack.backtrack_well() or pybacktrack.backstrip_well(),
otherwise returns default_sea_level.

Note

default_sea_level can be set to None

New in version 1.2.

	
get_sediment_isostatic_correction()

	
	Returns:

	Isostatic correction of this decompacted well.

	Return type:

	float

Notes

The returned correction can be added to a known water depth to obtain the deeper isostatically compensated,
sediment-free water depth (tectonic subsidence). Or the correction could be subtracted from a
known tectonic subsidence (unloaded water depth) to get the depth at sediment/water interface.

	
get_tectonic_subsidence()

	Returns the tectonic subsidence obtained directly from subsidence model (if backtracking) or
indirectly from average of minimum and maximum water depth and sea level (if backstripping).

	Returns:

	Tectonic subsidence (unloaded water depth) of this decompacted well.

	Return type:

	float

Notes

When backtracking, the tectonic subsidence is obtained directly from the tectonic_subsidence attribute.

When backstripping, the tectonic subsidence is obtained indirectly from the min_water_depth and
max_water_depth attributes and optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

	
get_water_depth()

	Returns the water depth obtained directly from average of minimum and maximum water depth (if backstripping) or
indirectly from tectonic subsidence model and sea level (if backtracking).

	Returns:

	Water depth of this decompacted well.

	Return type:

	float

Notes

When backstripping, the water depth is obtained directly as an average of the
min_water_depth and max_water_depth attributes.

When backtracking, the water depth is obtained indirectly from the tectonic_subsidence attribute
and optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

	
get_water_depth_from_tectonic_subsidence(tectonic_subsidence, sea_level=None)

	Returns the water depth of this decompacted well from the specified tectonic subsidence (and optional sea level).

	Parameters:

	
	tectonic_subsidence (float) – Tectonic subsidence.

	sea_level (float, optional) – Sea level relative to present day (positive to sea-level rise and negative for sea-level fall).

	Returns:

	Water depth of this decompacted well from its tectonic subsidence (unloaded water depth).

	Return type:

	float

Notes

Optional sea level fluctuation (relative to present day) is included if specified.

	
class pybacktrack.DecompactedStratigraphicUnit(stratigraphic_unit, decompacted_thickness, decompacted_density)

	Class to hold data for a decompacted stratigraphic unit (decompacted at a specific age).

	
stratigraphic_unit

	Stratigraphic unit referenced by this decompacted stratigraphic unit.

	Type:

	pybacktrack.StratigraphicUnit

	
decompacted_thickness

	Decompacted thickness.

	Type:

	float

	
decompacted_density

	Decompacted density.

	Type:

	float

	
__init__(stratigraphic_unit, decompacted_thickness, decompacted_density)

	Create a decompacted stratigraphic unit from a stratigraphic unit, decompacted thickness and decompacted density.

	Parameters:

	
	stratigraphic_unit (pybacktrack.StratigraphicUnit) – Stratigraphic unit referenced by this decompacted stratigraphic unit.

	decompacted_thickness (float) – Decompacted thickness.

	decompacted_density (float) – Decompacted density.

Converting oceanic age to depth

Convert ocean basin ages (Ma) to basement depth (metres) using different age/depth models.

Summary

pybacktrack.convert_age_to_depth() converts a single ocean basin age to basement depth.

pybacktrack.convert_age_to_depth_files() converts a sequence of ages (read from an input file) to depths (and writes both ages and depths to an output file).

Detail

	
pybacktrack.convert_age_to_depth(age, model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL)

	Convert ocean basin age to basement depth using a specified age/depth model.

	Parameters:

	
	age (float) – The age in Ma.

	model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to basement depth.
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	Returns:

	Depth (in metres) as a positive number.

	Return type:

	float

	Raises:

	
	ValueError – If age is negative.

	TypeError – If model is not a recognised model, or a function accepting a single parameter.

	
pybacktrack.convert_age_to_depth_files(input_filename, output_filename, model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL, age_column_index=0, reverse_output_columns=False)

	Converts age to depth by reading age rows from input file and writing rows containing both age and depth to output file.

	Parameters:

	
	input_filename (string) – Name of input text file containing the age values.
A single age value is obtained from each row by indexing the age_column_index column (zero-based index).

	output_filename (string) – Name of output text file containing age and depth values.
Each row of output file contains an age value and its associated depth value (with order depending on reverse_output_columns).

	model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when converting ocean age to basement depth.
It can be one of the enumerated values, or a callable function accepting a single non-negative age parameter and returning depth (in metres).

	age_column_index (int, optional) – Determines which column of input file to read age values from.

	reverse_output_columns (bool, optional) – Determines order of age and depth columns in output file.
If True then output depth age, otherwise output age depth.

	Raises:

	ValueError – If cannot read age value, as a floating-point number, from input file at column index age_column_index.

Continental rifting

Continental passive margin initial rifting subsidence and subsequent thermal subsidence.
Rifting is assumed instantaneous in that thermal contraction only happens after rifting has ended.

Summary

pybacktrack.estimate_rift_beta() estimates the stretching factor (beta).

pybacktrack.total_rift_subsidence() calcultaes the total subsidence as syn-rift plus post-rift.

pybacktrack.syn_rift_subsidence() calculates the initial subsidence due to continental stretching.

pybacktrack.post_rift_subsidence() calculates the thermal subsidence as a function of time.

Detail

	
pybacktrack.estimate_rift_beta(present_day_subsidence, present_day_crustal_thickness, rift_end_time)

	Estimate the stretching factor (beta).

	Parameters:

	
	present_day_subsidence (float) – The (sediment-free) subsidence at present day (in metres).

	present_day_crustal_thickness (float) – The crustal thickness at present day (in metres).

	rift_end_time (float) – The time that rifting ended (in My).

	Returns:

	
	beta (float) – The estimated stretching factor.

	residual (float) – The inaccuracy between present day subsidence and subsidence calculated using the estimated stretching factor (beta).

Notes

Stretching factor (beta) is calculated by minimizing difference between actual subsidence and
subsidence calculated from beta (both at present day).

	
pybacktrack.total_rift_subsidence(beta, pre_rift_crustal_thickness, time, rift_end_time, rift_start_time=None)

	Total subsidence as syn-rift plus post-rift.

	Parameters:

	
	beta (float) – Stretching factor.

	pre_rift_crustal_thickness (float) – Initial crustal thickness prior to rifting (in metres).

	time (float) – Time to calculate subsidence (in My).

	rift_end_time (float) – Time at which rifting ended (in My).

	rift_start_time (float, optional) – Time at which rifting started (in My).
If not specified then assumes initial (non-thermal) subsidence happens instantaneously at rift_end_time.
Defaults to rift_end_time.

	Returns:

	Total subsidence (in metres).

	Return type:

	float

	
pybacktrack.syn_rift_subsidence(beta, pre_rift_crustal_thickness)

	Initial subsidence (in metres) due to continental stretching.

	Parameters:

	
	beta (float) – Stretching factor.

	pre_rift_crustal_thickness (float) – Initial crustal thickness prior to rifting (in metres).

	Returns:

	Initial subsidence (in metres) due to continental stretching.

	Return type:

	float

	
pybacktrack.post_rift_subsidence(beta, time)

	Thermal subsidence (in metres) as a function of time.

	Parameters:

	
	beta (float) – Stretching factor.

	time (float) – The amount of time that has passed after rifting/stretching has ended.

	Returns:

	Thermal subsidence (in metres).

	Return type:

	float

Dynamic topography

Summary

pybacktrack.DynamicTopography is a class that reconstructs point location(s) and samples (and interpolates) time-dependent dynamic topography mantle frame grids.

pybacktrack.InterpolateDynamicTopography is a class that just samples and interpolates time-dependent dynamic topography mantle frame grid files.

Detail

	
class pybacktrack.DynamicTopography(grid_list_filename, static_polygon_filename, rotation_filenames, longitude, latitude, age=None)

	Class that reconstructs point location(s) and samples (and interpolates) time-dependent dynamic topography mantle frame grid files.

	
longitude

	Longitude of the point location, or list of longitudes (if multiple point locations).

	Type:

	float or list of float

	
latitude

	Latitude of the point location, or list of latitudes (if multiple point locations).

	Type:

	float or list of float

	
age

	The age of the crust that the point location is on, or list of ages (if multiple point locations).

Note

If no age(s) was supplied then the age(s) of the static polygon(s)
containing location(s) is used (or zero when no polygon contains a location).

	Type:

	float or list of float

Notes

Changed in version 1.4: Can have multiple point locations (version 1.3 allowed only one location).
So longitude, latitude and age can all have either a single value or multiple values (same number for each).

	
__init__(grid_list_filename, static_polygon_filename, rotation_filenames, longitude, latitude, age=None)

	Load dynamic topography grid filenames and associated ages from grid list file ‘grid_list_filename’.

	Parameters:

	
	grid_list_filename (str) – The filename of the grid list file.

	static_polygon_filename (str) – The filename of the static polygons file.

	rotation_filenames (list of str) – The list of rotation filenames.

	longitude (float or list of float) – Longitude of the point location, or list of longitudes (if multiple point locations).

	latitude (float or list of float) – Latitude of the point location, or list of latitudes (if multiple point locations).

	age (float or list of float, optional) – The age of the crust that the point location is on, or list of ages (if multiple point locations).
If not specified then the appearance age(s) of the static polygon(s) containing the point(s) is used.

	Raises:

	
	ValueError – If any age is negative (if specified).

	ValueError – If longitude and latitude (and age if specified) are all not a single value or all not a sequence (of same length).

	ValueError – If grid_list_filename does not contain a grid at present day, or
 grid_list_filename contains fewer than two grids, or
 not all rows in grid_list_filename contain a grid filename followed by an age, or
 there are two ages in grid_list_filename with same age.

Notes

Each dynamic topography grid should be in the mantle reference frame (not plate reference frame) and
should have global coverage (such that no sample location will return NaN).

Each row in the grid list file should contain two columns. First column containing
filename (relative to directory of list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).

Each present day location is also assigned a plate ID using the static polygons,
and the rotations are used to reconstruct each location when sampling the grids at a reconstructed time.

Changed in version 1.4: The following changes were made:

	Added ability to specify a list of point locations (as an alternative to specifying a single location).

	Raises ValueError if there’s no present day grid or if any age is negative.

	
static create_from_bundled_model(dynamic_topography_model_name, longitude, latitude, age=None)

	Create a DynamicTopography instance from a bundled dynamic topography model name.

	Parameters:

	
	dynamic_topography_model_name (str) – Name of a bundled dynamic topography model.
Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	longitude (float or list of float) – Longitude of the point location, or list of longitudes (if multiple point locations).

	latitude (float or list of float) – Latitude of the point location, or list of latitudes (if multiple point locations).

	age (float or list of float, optional) – The age of the crust that the point location is on, or list of ages (if multiple point locations).
If not specified then the appearance age(s) of the static polygon(s) containing the point(s) is used.

	Returns:

	The bundled dynamic topography model.

	Return type:

	pybacktrack.DynamicTopography

	Raises:

	ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic topography model.

Notes

New in version 1.2.

Changed in version 1.4: Added ability to specify a list of point locations (as an alternative to specifying a single location).

	
static create_from_model_or_bundled_model_name(dynamic_topography_model_or_bundled_model_name, longitude, latitude, age=None)

	Create a DynamicTopography instance from a user-provided model or from a bundled model.

	Parameters:

	
	dynamic_topography_model_or_bundled_model_name (str or 3-tuple (str, str, list of str)) – Either the name of a bundled dynamic topography model (see pybacktrack.DynamicTopography.create_from_bundled_model()), or
a user-provided model specified as a 3-tuple (filename of the grid list file, filename of the static polygons file, list of rotation filenames)
(see first three parameters of pybacktrack.DynamicTopography.__init__()).

	longitude (float or list of float) – Longitude of the point location, or list of longitudes (if multiple point locations).

	latitude (float or list of float) – Latitude of the point location, or list of latitudes (if multiple point locations).

	age (float or list of float, optional) – The age of the crust that the point location is on, or list of ages (if multiple point locations).
If not specified then the appearance age(s) of the static polygon(s) containing the point(s) is used.

	Returns:

	The dynamic topography model loaded from a user-provided model or from a bundled model.

	Return type:

	pybacktrack.DynamicTopography

Notes

New in version 1.4.

	
static get_bundled_model(dynamic_topography_model_name)

	Get the bundled model files for the specified dynamic topography model name.

	Parameters:

	dynamic_topography_model_name (str) – Name of a bundled dynamic topography model.
Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	Returns:

	The bundled dynamic topography model files (see first three parameters of pybacktrack.DynamicTopography.__init__()).
This consists of a 3-tuple of:

	Filename of the grid list file.

	Filename of the static polygons file.

	List of rotation filenames.

	Return type:

	3-tuple of (grid_list_filename, static_polygon_filename, rotation_filenames)

	Raises:

	ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic topography model.

Notes

The returned model information is obtained from pybacktrack.BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS
(see Bundle data).

New in version 1.5.

	
sample(time, fallback=True)

	Samples and interpolates the two time-dependent dynamic topography grids surrounding time at point location(s) reconstructed to time,
but optionally falls back to a non-optimal sampling if necessary (depending on time)

	Parameters:

	
	time (float) – Time to sample dynamic topography.

	fallback (bool) – Whether to fall back to a non-optimal sampling if neccessary (see notes below).
Defaults to True.

	Returns:

	The sampled dynamic topography value or list of values.
If constructed with a single location then returns a single value, otherwise
returns a list of values (one per location).

When fallback is True then float('NaN`) will never be returned (see notes below).
When fallback is False then float('NaN`) will be returned:

	for all points when the oldest dynamic topography grid is younger than time, or

	for each point location whose age is younger than time (ie, has not yet appeared).

	Return type:

	float or list of float

Notes

Each point location is first reconstructed to time before sampling the two grids surrounding time
at the reconstructed location and interpolating between them.

For each point location, if time is older than its appearance age then it is still reconstructed to time
when fallback is True, otherwise float('NaN`) is returned (for that location) when fallback is False.

If time is older than the oldest grid then the oldest grid is sampled when fallback is True,
otherwise float('NaN`) is returned for all locations when fallback is False.

Changed in version 1.2: Previously this method was called sample_interpolated and did not fall back to non-optimal sampling when necessary.

Changed in version 1.4: The following changes were made:

	Merged sample, sample_interpolated and sample_oldest methods into one method (this method).

	Added fallback parameter (where False behaves like removed sample_interpolated method).

	Added ability to specify a list of point locations (as an alternative to specifying a single location).

	Changed how grids are interpolated:

	Version 1.3 (and earlier) reconstructed each location to two times (of the two grids surrounding time) to get two reconstructed locations.
Then each reconstructed location sampled its respective grid (ie, each grid was sampled at a different reconstructed location).
Then these two samples were interpolated (based on time).

	Version 1.4 reconstructs each location to the single time to get a single reconstructed location.
Then that single reconstructed location samples both grids surrounding time (ie, each grid is sampled at the same reconstructed location).
Then these two samples are interpolated (based on time).

…note that there is no difference at grid times (only between grid times).

	
class pybacktrack.InterpolateDynamicTopography(grid_list_filename)

	Class that just samples and interpolates time-dependent dynamic topography mantle frame grid files.

This class accepts locations that have already been reconstructed whereas pybacktrack.DynamicTopography
accepts present day locations and reconstructs them prior to sampling the dynamic topography grids.

Notes

New in version 1.4.

	
__init__(grid_list_filename)

	Load dynamic topography grid filenames and associated ages from grid list file ‘grid_list_filename’.

	Parameters:

	grid_list_filename (str) – The filename of the grid list file.

	Raises:

	ValueError – If grid_list_filename does not contain a grid at present day, or
 grid_list_filename contains fewer than two grids, or
 not all rows in grid_list_filename contain a grid filename followed by an age, or
 there are two ages in grid_list_filename with same age.

Notes

Each dynamic topography grid should be in the mantle reference frame (not plate reference frame) and
should have global coverage (such that no sample location will return NaN).

Each row in the grid list file should contain two columns. First column containing
filename (relative to directory of list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma).

New in version 1.4.

	
static create_from_bundled_model(dynamic_topography_model_name)

	Create a InterpolateDynamicTopography instance from a bundled dynamic topography model name.

	Parameters:

	dynamic_topography_model_name (str) – Name of a bundled dynamic topography model.
Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	Returns:

	The bundled dynamic topography model.

	Return type:

	pybacktrack.InterpolateDynamicTopography

	Raises:

	ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic topography model.

Notes

New in version 1.4.

	
static create_from_model_or_bundled_model_name(dynamic_topography_model_or_bundled_model_name)

	Create a InterpolateDynamicTopography instance from a user-provided model or from a bundled model.

	Parameters:

	dynamic_topography_model_or_bundled_model_name (str) – Either the name of a bundled dynamic topography model (see pybacktrack.InterpolateDynamicTopography.create_from_bundled_model()), or
a user-provided model specified as the filename of the grid list file (see parameter of pybacktrack.InterpolateDynamicTopography.__init__()).

	Raises:

	ValueError – If dynamic_topography_model_or_bundled_model_name is not the name of a bundled dynamic topography model or
 the filename of an existing grid list file.

	Returns:

	The dynamic topography model loaded from a user-provided model or from a bundled model.

	Return type:

	pybacktrack.InterpolateDynamicTopography

Notes

New in version 1.4.

	
sample(time, locations, fallback_to_oldest=True)

	Samples and interpolates the two time-dependent dynamic topography grids surrounding time at the specified point location(s), but
optionally falls back to sampling oldest grid (if time is too old).

	Parameters:

	
	time (float) – Time to sample dynamic topography.

	locations (sequence of 2-tuple (float, float)) – A sequence of (longitude, latitude) point locations.

	fallback_to_oldest (bool) – Whether to fall back to sampling oldest grid (if time is too old) rather than
interpolating the two grids surrounding time.
Defaults to True.

	Returns:

	The sampled dynamic topography values (one per location).

When time is older than the oldest dynamic topography grid:

	if fallback_to_oldest is True then the oldest dynamic topography grid is sampled, or

	if fallback_to_oldest is False then None is returned.

	Return type:

	list of float, or None

Notes

The point location(s) sample the two grids with ages bounding time and then interpolate between them.

However if time is older than the oldest grid then the oldest grid is sampled (if fallback_to_oldest is True).

All returned sample values are non-NaN.

New in version 1.4.

Average sea level variations

Read a sea level file and compute average sea level variations during time periods.

Summary

pybacktrack.SeaLevel is a class that calculates integrated sea levels (relative to present day) over a time period.

Detail

	
class pybacktrack.SeaLevel(sea_level_filename)

	Class to calculate integrated sea levels (relative to present day) over a time period.

	
__init__(sea_level_filename)

	Load sea level curve (linear segments) from file.

	Parameters:

	sea_level_filename (str) – Text file with first column containing ages (Ma) and a corresponding second column of sea levels (m).

	
static create_from_bundled_model(sea_level_model_name)

	Create a SeaLevel instance from a bundled sea level model name.

	Parameters:

	sea_level_model_name (string) – Name of a bundled sea level model.
Bundled sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	Returns:

	The bundled sea level model.

	Return type:

	pybacktrack.SeaLevel

	Raises:

	ValueError – If sea_level_model_name is not the name of a bundled sea level model.

Notes

New in version 1.2.

	
static create_from_model_or_bundled_model_name(sea_level_model_or_bundled_model_name)

	Create a SeaLevel instance from a user-provided model or from a bundled model.

	Parameters:

	sea_level_model_or_bundled_model_name (string) – Either a user-provided model specified as a text filename containing sea level curve (see pybacktrack.SeaLevel.__init__()), or
name of a bundled model (see pybacktrack.SeaLevel.create_from_bundled_model()), .

	Returns:

	The sea level model loaded from a user-provided model or from a bundled model.

	Return type:

	pybacktrack.SeaLevel

Notes

New in version 1.4.

	
get_average_level(begin_time, end_time)

	Return the average sea level over the specified time period.

	Parameters:

	
	begin_time (float) – The begin time (in Ma). Should be larger than end_time.

	end_time (float) – The end time (in Ma). Should be smaller than begin_time.

	Returns:

	Average sea level (in metres).

	Return type:

	float

Notes

The average sea level is obtained by integrating sea level curve over the specified time period and then dividing by time period.

Converting stratigraphic depth to age

Convert stratigraphic depths (metres) to age (Ma) using an depth-to-age model.

Summary

pybacktrack.convert_stratigraphic_depth_to_age() converts a single stratigraphic depth to an age.

pybacktrack.convert_stratigraphic_depth_to_age_files() converts a sequence of stratigraphic depths (read from an input file) to ages
(and writes both ages and depths, and any lithologies in the input file, to an output file).

Detail

	
pybacktrack.convert_stratigraphic_depth_to_age(age, depth_to_age_model)

	Convert stratigraphic depth to age using a specified depth-to-age model.

	Parameters:

	
	depth (float) – The stratigraphic depth in metres.

	depth_to_age_model (function) – The model to use when converting stratigraphic depth to age.
A callable function accepting a single non-negative depth parameter (in metres) and returning age (in Ma).

	Returns:

	Age (in Ma) as a positive number.

	Return type:

	float

	Raises:

	
	ValueError – If depth is negative.

	TypeError – If depth_to_age_model is not a function accepting a single parameter.

Notes

New in version 1.5.

	
pybacktrack.convert_stratigraphic_depth_to_age_files(input_filename, output_filename, depth_to_age_model, reverse_output_columns=False)

	Converts stratigraphic depth to age by reading depth rows (in first column) from input file and writing rows containing both age and depth to output file.

	Parameters:

	
	input_filename (string) – Name of input text file containing the depth values.
A single depth value is obtained from each row by indexing the first column.

	output_filename (string) – Name of output text file containing age and depth values.
Each row of output file contains an age value and its associated depth value (with order depending on reverse_output_columns).

	depth_to_age_model (function) – The model to use when converting stratigraphic depth to age.
A callable function accepting a single non-negative depth parameter (in metres), and returning age (in Ma) or None to exclude from output.

	reverse_output_columns (bool, optional) – Determines order of age and depth columns in output file.
If True then output depth age, otherwise output age depth.

	Raises:

	
	ValueError – If cannot read depth value, as a floating-point number, from input file in the first column.

	ValueError – If stratigraphic depths are not monotonically increasing.

Notes

New in version 1.5.

Utilities

Interpolate a sequence of linear segments read from a 2-column file at the values read from a 1-column file.

Summary

pybacktrack.read_interpolate_function() reads x and y columns from a curve file and returns a function y(x) that linearly interpolates.

pybacktrack.interpolate_file() interpolates a curve function at x positions, read from input file, and stores both x and interpolated y values to output file.

Detail

	
pybacktrack.read_interpolate_function(curve_filename, x_column_index=0, y_column_index=1, out_of_bounds='clamp')

	Read x and y columns from a curve file and return a function y(x) that linearly interpolates.

	Parameters:

	
	curve_filename (string) – Name of input text file containing the x and y data from which to create the returned curve function.

	x_column_index (int, optional) – Determines which column of input text file to read x values from.

	y_column_index (int, optional) – Determines which column of input text file to read y values from.

	out_of_bounds (string, optional) – Determines the y value returned by curve function when x is outside the range of x values in curve file.
This can be:

	clamp to return the boundary y value, or

	exclude to return None (eg, to indicate that there’s no y value), or

	extrapolate to return an extrapolated value.

	Returns:

	
	curve_function (function) – A callable function y=f(x) accepting a single x argument, and returning a y value or None (if no y value).

	x_column (list of float) – The x values read from the curve file.

	y_column (list of float) – The y values read from the curve file.

	Raises:

	
	ValueError – If cannot read x and y columns, as floating-point numbers, from the curve file at column indices x_column_index and y_column_index.

	ValueError – If curve file contains no data.

	ValueError – If out_of_bounds is not clamp, exclude or extrapolate.

Notes

The returned x and y columns are useful if integrating the curve function with scipy.integrate.quad
(since can pass x column to its points argument and len(x) to its limit).

Changed in version 1.5: Added out_of_bounds argument.
If out_of_bounds is exclude then returned curve function will return None for any input x outside the range of x values in curve file.

	
pybacktrack.interpolate_file(curve_function, input_filename, output_filename, input_x_column_index=0, reverse_output_columns=False)

	Interpolate curve_function at x positions, read from input file, and store both x and interpolated y values to output file.

	Parameters:

	
	curve_function (function) – A callable function y=f(x) accepting a single x argument and returning a y value (or None to exclude from output).

	input_filename (string) – Name of input text file containing the x positions at which to sample curve_function.
A single x value is obtained from each row by indexing the input_x_column_index column (zero-based index).

	output_filename (string) – Name of output text file containing x and y values.
Each row of output file contains an x value and its associated y value (with order depending on reverse_output_columns).

	input_x_column_index (int, optional) – Determines which column of input file to read x values from.

	reverse_output_columns (bool, optional) – Determines order of x and y columns in output file.
If True then output y x, otherwise output x y.

	Raises:

	ValueError – If cannot read an x value, as a floating-point number, from input file at column index input_x_column_index.

Notes

Changed in version 1.5: curve_function can return None, in which case there is no output row for the input x.

Constants

This section covers the various pre-defined constants that can be passed to the above functions and classes.

Bundle data

The following bundled data comes included with the pybacktrack package:

	a lithologies text file

	an age grid

	a sediment thickness grid

	a crustal thickness grid

	a topography grid

	a collection of common dynamic topography models

	a couple of sea level curves

The following attributes are available to access the bundled data:

	pybacktrack.BUNDLE_PATH
	Base directory of the bundled data.

This is an absolute path so that scripts outside the pybacktrack package can also reference the bundled data.
All bundle data paths are derived from this base path.

	pybacktrack.BUNDLE_LITHOLOGY_FILENAMES
	A list of bundled lithology filenames.

	pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME
	Same as pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME.

	pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME
	The primary lithology filename contains the lithologies covered in Table 1 in the pyBacktrack paper:

	Müller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018,
PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust [https://doi.org/10.1029/2017GC007313],
Geochemistry, Geophysics, Geosystems, 19, 1898-1909, doi: 10.1029/2017GC007313.

	pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME
	The optional extended lithology filename extends the primary lithologies, and mostly contains lithologies in shallow water.

	pybacktrack.BUNDLE_AGE_GRID_FILENAME
	Bundled age grid file.

	pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME
	Bundled topography/bathymetry grid file.

	pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME
	Bundled total sediment thickness grid file.

	pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME
	Bundled crustal thickness grid file.

	pybacktrack.BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS
	Bundled dynamic topography models.

This is a dict mapping dynamic topography model name to model information 3-tuple of (grid list filenames, static polygon filename and rotation filenames).
Each key or value in the dict can be passed to the dynamic_topography_model argument of pybacktrack.backtrack_well() and pybacktrack.backtrack_and_write_well().

	pybacktrack.BUNDLE_DYNAMIC_TOPOGRAPHY_MODEL_NAMES
	A list of bundled dynamic topography model names (keys in BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS).

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and gld428.

	pybacktrack.BUNDLE_SEA_LEVEL_MODELS
	Bundled sea level models.

This is a dict mapping sea level model name to sea level file.
Each key or value in the dict can be passed to the sea_level_model argument of pybacktrack.backtrack_well() and pybacktrack.backtrack_and_write_well().

	pybacktrack.BUNDLE_SEA_LEVEL_MODEL_NAMES
	A list of bundled sea level model names (keys in BUNDLE_SEA_LEVEL_MODELS).

Choices include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

	pybacktrack.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES
	Rotation files of the reconstruction model used to reconstruct sediment-deposited crust for paleobathymetry gridding.

	pybacktrack.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME
	Static polygon file of the reconstruction model used to assign plate IDs to points on sediment-deposited crust for paleobathymetry gridding.

Backtracking

	pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS
	Default list of decompacted columns used for decompacted_columns argument of
pybacktrack.backtrack_well() and pybacktrack.backtrack_and_write_well().

List of column types available for the decompacted_columns argument of
pybacktrack.backtrack_well() and pybacktrack.backtrack_and_write_well():

	pybacktrack.BACKTRACK_COLUMN_AGE

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

	pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

	pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

	pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

Backstripping

	pybacktrack.BACKSTRIP_DEFAULT_DECOMPACTED_COLUMNS
	Default list of decompacted columns used for decompacted_columns argument of
pybacktrack.backstrip_well() and pybacktrack.backstrip_and_write_well().

List of column types available for the decompacted_columns argument of
pybacktrack.backstrip_well() and pybacktrack.backstrip_and_write_well():

	pybacktrack.BACKSTRIP_COLUMN_AGE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

	pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

	pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

	pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

	pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

Paleobathymetry

	pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME
	Default name of the lithology of all sediment (for paleo bathymetry gridding the total sediment thickness at all
sediment locations consists of a single lithology). This lithology is the average of the ocean floor sediment.
This differs from the base lithology of drill sites where the undrilled portions are usually below the
Carbonate Compensation Depth (CCD) where shale dominates.

Lithology

	pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME
	Default name of the lithology of the stratigraphic unit at the base of a drill site (the undrilled portion).
This lithology is shale since the undrilled portions are usually below the Carbonate Compensation Depth (CCD) where shale dominates.

Oceanic subsidence

	pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18
	Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere system.

	pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007
	Crosby, A.G., (2007) Aspects of the relationship between topography and gravity on the Earth and Moon, PhD thesis.

	pybacktrack.AGE_TO_DEPTH_MODEL_GDH1
	Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with lithospheric age.

	pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL
	The age-to-depth model to use by default.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (pybacktrack.DecompactedStratigraphicUnit method)

 	(pybacktrack.DecompactedWell method)

 	(pybacktrack.DynamicTopography method)

 	(pybacktrack.InterpolateDynamicTopography method)

 	(pybacktrack.Lithology method)

 	(pybacktrack.SeaLevel method)

 	(pybacktrack.StratigraphicUnit method)

 	(pybacktrack.Well method)

A

 	
 	add_compacted_unit() (pybacktrack.Well method)

 	
 	add_decompacted_unit() (pybacktrack.DecompactedWell method)

 	age (pybacktrack.DynamicTopography attribute)

B

 	
 	backstrip_and_write_well() (in module pybacktrack)

 	backstrip_well() (in module pybacktrack)

 	backtrack_and_write_well() (in module pybacktrack)

 	
 	backtrack_well() (in module pybacktrack)

 	bottom_age (pybacktrack.StratigraphicUnit attribute)

 	bottom_depth (pybacktrack.StratigraphicUnit attribute)

C

 	
 	calc_decompacted_density() (pybacktrack.StratigraphicUnit method)

 	calc_decompacted_thickness() (pybacktrack.StratigraphicUnit method)

 	convert_age_to_depth() (in module pybacktrack)

 	convert_age_to_depth_files() (in module pybacktrack)

 	convert_stratigraphic_depth_to_age() (in module pybacktrack)

 	convert_stratigraphic_depth_to_age_files() (in module pybacktrack)

 	create_from_bundled_model() (pybacktrack.DynamicTopography static method)

 	(pybacktrack.InterpolateDynamicTopography static method)

 	(pybacktrack.SeaLevel static method)

 	
 	create_from_model_or_bundled_model_name() (pybacktrack.DynamicTopography static method)

 	(pybacktrack.InterpolateDynamicTopography static method)

 	(pybacktrack.SeaLevel static method)

 	create_lithology() (in module pybacktrack)

 	create_lithology_from_components() (in module pybacktrack)

 	create_partial_unit() (pybacktrack.StratigraphicUnit static method)

D

 	
 	decompact() (pybacktrack.Well method)

 	decompacted_bottom_depth (pybacktrack.StratigraphicUnit attribute)

 	decompacted_density (pybacktrack.DecompactedStratigraphicUnit attribute)

 	decompacted_stratigraphic_units (pybacktrack.DecompactedWell attribute)

 	decompacted_thickness (pybacktrack.DecompactedStratigraphicUnit attribute)

 	
 	decompacted_top_depth (pybacktrack.StratigraphicUnit attribute)

 	DecompactedStratigraphicUnit (class in pybacktrack)

 	DecompactedWell (class in pybacktrack)

 	dynamic_topography (pybacktrack.DecompactedWell attribute)

 	DynamicTopography (class in pybacktrack)

E

 	
 	estimate_rift_beta() (in module pybacktrack)

G

 	
 	generate_lon_lat_points() (in module pybacktrack)

 	get_age() (pybacktrack.DecompactedWell method)

 	get_average_decompacted_density() (pybacktrack.DecompactedWell method)

 	get_average_level() (pybacktrack.SeaLevel method)

 	get_bundled_model() (pybacktrack.DynamicTopography static method)

 	get_decompacted_sediment_rate() (pybacktrack.StratigraphicUnit method)

 	get_dynamic_topography() (pybacktrack.DecompactedWell method)

 	get_fully_decompacted_thickness() (pybacktrack.StratigraphicUnit method)

 	
 	get_min_max_tectonic_subsidence() (pybacktrack.DecompactedWell method)

 	get_min_max_tectonic_subsidence_from_water_depth() (pybacktrack.DecompactedWell method)

 	get_min_max_water_depth() (pybacktrack.DecompactedWell method)

 	get_sea_level() (pybacktrack.DecompactedWell method)

 	get_sediment_isostatic_correction() (pybacktrack.DecompactedWell method)

 	get_tectonic_subsidence() (pybacktrack.DecompactedWell method)

 	get_water_depth() (pybacktrack.DecompactedWell method)

 	get_water_depth_from_tectonic_subsidence() (pybacktrack.DecompactedWell method)

I

 	
 	interpolate_file() (in module pybacktrack)

 	
 	InterpolateDynamicTopography (class in pybacktrack)

L

 	
 	latitude (pybacktrack.DynamicTopography attribute)

 	(pybacktrack.Well attribute)

 	Lithology (class in pybacktrack)

 	
 	lithology_components (pybacktrack.StratigraphicUnit attribute)

 	longitude (pybacktrack.DynamicTopography attribute)

 	(pybacktrack.Well attribute)

M

 	
 	max_water_depth (pybacktrack.DecompactedWell attribute)

 	(pybacktrack.StratigraphicUnit attribute)

 	
 	min_water_depth (pybacktrack.DecompactedWell attribute)

 	(pybacktrack.StratigraphicUnit attribute)

P

 	
 	post_rift_subsidence() (in module pybacktrack)

R

 	
 	read_interpolate_function() (in module pybacktrack)

 	read_lithologies_file() (in module pybacktrack)

 	read_lithologies_files() (in module pybacktrack)

 	
 	read_well_file() (in module pybacktrack)

 	reconstruct_paleo_bathymetry() (in module pybacktrack)

 	reconstruct_paleo_bathymetry_grids() (in module pybacktrack)

S

 	
 	sample() (pybacktrack.DynamicTopography method)

 	(pybacktrack.InterpolateDynamicTopography method)

 	sea_level (pybacktrack.DecompactedWell attribute)

 	SeaLevel (class in pybacktrack)

 	
 	stratigraphic_unit (pybacktrack.DecompactedStratigraphicUnit attribute)

 	stratigraphic_units (pybacktrack.Well attribute)

 	StratigraphicUnit (class in pybacktrack)

 	surface_unit (pybacktrack.DecompactedWell attribute)

 	syn_rift_subsidence() (in module pybacktrack)

T

 	
 	tectonic_subsidence (pybacktrack.DecompactedWell attribute)

 	top_age (pybacktrack.StratigraphicUnit attribute)

 	top_depth (pybacktrack.StratigraphicUnit attribute)

 	
 	total_compacted_thickness (pybacktrack.DecompactedWell attribute)

 	total_decompacted_thickness (pybacktrack.DecompactedWell attribute)

 	total_rift_subsidence() (in module pybacktrack)

W

 	
 	Well (class in pybacktrack)

 	write_backstrip_well() (in module pybacktrack)

 	write_backtrack_well() (in module pybacktrack)

 	
 	write_paleo_bathymetry_grids() (in module pybacktrack)

 	write_well_file() (in module pybacktrack)

 	write_well_metadata() (in module pybacktrack)

 nav.xhtml

 Table of Contents

 		
 PyBacktrack documentation

 		
 Getting Started

 		
 Installation

 		
 Install pybacktrack

 		
 Install the examples

 		
 A Backtracking Example

 		
 Use a built-in module script

 		
 Import into your own script

 		
 Overview

 		
 Running pyBacktrack

 		
 Running the scripts built into pyBacktrack

 		
 backtrack

 		
 backstrip

 		
 paleo_bathymetry

 		
 age_to_depth

 		
 stratigraphic_depth_to_age

 		
 interpolate

 		
 Running your own script that imports pyBacktrack

 		
 backtrack

 		
 backstrip

 		
 paleo_bathymetry

 		
 age_to_depth

 		
 stratigraphic_depth_to_age

 		
 interpolate

 		
 Stratigraphy

 		
 Drill site

 		
 Backtracking versus backstripping sites

 		
 Drill site file format

 		
 Base sediment layer

 		
 Geohistory analysis

 		
 Lithology Definitions

 		
 Bundled lithology definitions

 		
 Lithology file format

 		
 Specifying lithology definitions

 		
 Conflicting lithology definitions

 		
 Backtrack

 		
 Overview

 		
 Running backtrack

 		
 Example

 		
 Backtrack output

 		
 Amended drill site output

 		
 Decompacted output

 		
 Sea level variation

 		
 Oceanic and continental tectonic subsidence

 		
 Oceanic versus continental drill sites

 		
 Present-day tectonic subsidence

 		
 Oceanic subsidence

 		
 Continental subsidence

 		
 Dynamic topography

 		
 Geohistory analysis

 		
 Continental subsidence

 		
 Oceanic subsidence

 		
 Backstrip

 		
 Overview

 		
 Running backstrip

 		
 Example

 		
 Backstrip output

 		
 Amended drill site output

 		
 Decompacted output

 		
 Sea level variation

 		
 Geohistory analysis

 		
 Paleobathymetry

 		
 Overview

 		
 Running paleobathymetry

 		
 Example

 		
 Paleobathymetry output

 		
 Paleobathymetry gridding procedure

 		
 Builtin rift gridding procedure

 		
 Reference

 		
 Backtracking

 		
 Summary

 		
 Detail

 		
 Backstripping

 		
 Summary

 		
 Detail

 		
 Paleobathymetry

 		
 Summary

 		
 Detail

 		
 Creating lithologies

 		
 Summary

 		
 Detail

 		
 Decompacting well sites

 		
 Reading and writing well files

 		
 Compacted well

 		
 Decompacted well

 		
 Converting oceanic age to depth

 		
 Summary

 		
 Detail

 		
 Continental rifting

 		
 Summary

 		
 Detail

 		
 Dynamic topography

 		
 Summary

 		
 Detail

 		
 Average sea level variations

 		
 Summary

 		
 Detail

 		
 Converting stratigraphic depth to age

 		
 Summary

 		
 Detail

 		
 Utilities

 		
 Summary

 		
 Detail

 		
 Constants

 		
 Bundle data

 		
 Backtracking

 		
 Backstripping

 		
 Paleobathymetry

 		
 Lithology

 		
 Oceanic subsidence

_images/paleo_bathymetry_12m_M7_GDH1_0Ma.png

_images/paleo_bathymetry_12m_M7_GDH1_60Ma.png

_images/geohistory_ODP-114-699.png
1000

Depth (m)

3000

000

Geohistory analysis

— surface sediment
~~ tectonic subsidence
ynamic topography

E] @ EJ B o 0

_images/geohistory_sunrise.png
Geohistory analysis

0
00
2 100
€
g
3
1500
200
— sutce sediment
— tectonic subsidence
"~ aynamic topography

¥ B0 @5 w0 & ® & b
Age (Ma)

_static/file.png

_static/minus.png

_static/plus.png

_images/geohistory_DSDP-36-327.png
Geohistory analysis

o
100
200
E
& 00
3
000
s000
— sutace sedment
— tectonc subsdence
. dynamic topography

B0 100 EY @ @ Ed []

