
pyBacktrack Documentation
Release 1.5.0.dev8

John Cannon

Nov 20, 2023





CONTENTS

1 Reference 3

2 Contents 5
2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 A Backtracking Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Running pyBacktrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Running the scripts built into pyBacktrack . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Running your own script that imports pyBacktrack . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Stratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Drill site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Lithology Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Backtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Running backtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Backtrack output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Sea level variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 Oceanic and continental tectonic subsidence . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.6 Oceanic subsidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.7 Continental subsidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.8 Dynamic topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.9 Geohistory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Backstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Running backstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 Backstrip output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.4 Sea level variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.5 Geohistory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Paleobathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.2 Running paleobathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.3 Paleobathymetry output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.4 Paleobathymetry gridding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.5 Builtin rift gridding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7.1 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7.2 Backstripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.3 Paleobathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.4 Creating lithologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

i



2.7.5 Decompacting well sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7.6 Converting oceanic age to depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.7.7 Continental rifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.7.8 Dynamic topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.7.9 Average sea level variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.7.10 Converting stratigraphic depth to age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.7.11 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.7.12 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3 Indices and tables 107

Index 109

ii



pyBacktrack Documentation, Release 1.5.0.dev8

A tool for reconstructing paleobathymetry on oceanic and continental crust.

PyBacktrack is a Python package that backtracks the paleo-water depth of ocean drill sites through time by combining
a model of tectonic subsidence with decompaction of the site stratigraphic lithologies. PyBacktrack can also include
the effects of mantle-convection driven dynamic topography on paleo-water depth, as well as sea-level variations.
PyBacktrack provides a model of tectonic subsidence on both oceanic and continental crust. Ocean crust subsidence
is based on a user-selected lithospheric age-depth model and the present-day unloaded basement depth. Continental
crust subsidence is based on syn-rift and post-rift subsidence that is modelled using the total sediment thickness at the
site and the timing of the transition from rifting to thermal subsidence. At drill sites that did not penetrate to basement,
the age-coded stratigraphy is supplemented with a synthetic stratigraphic section that represents the undrilled section,
whose thickness is estimated using a global sediment thickness map. This is essential for estimating the decompacted
thickness of the total sedimentary section, and thus bathymetry, through time. At drill sites on stretched continental
crust where the paleo-water depth is known from benthic fossil assemblages, tectonic subsidence can be computed
via backstripping. The workflow is similar to backtracking, but paleo-water depths and their uncertainties need to be
supplied as part of the input. In addition to individual 1D drill sites, all submerged present-day crust (assigned a single
lithology) can be backtracked and reconstructed to generate 2D paleobathymetry grids through time.

CONTENTS 1



pyBacktrack Documentation, Release 1.5.0.dev8

2 CONTENTS



CHAPTER

ONE

REFERENCE

The following paper covers the theory and algorithms of pyBacktrack:

• Muller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018, PyBacktrack 1.0: A Tool for Reconstructing
Paleobathymetry on Oceanic and Continental Crust, Geochemistry, Geophysics, Geosystems, 19, 1898-1909,
doi: 10.1029/2017GC007313

Note: The paper can be downloaded either at Geochemistry, Geophysics, Geosystems or ResearchGate.

3

https://doi.org/10.1029/2017GC007313
https://doi.org/10.1029/2017GC007313
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GC007313
https://www.researchgate.net/publication/325045269_PyBacktrack_10_A_Tool_for_Reconstructing_Paleobathymetry_on_Oceanic_and_Continental_Crust


pyBacktrack Documentation, Release 1.5.0.dev8

4 Chapter 1. Reference



CHAPTER

TWO

CONTENTS

2.1 Getting Started

• Installation

– Install pybacktrack

∗ Using conda

∗ Using pip

· Requirements

· Install pybacktrack

∗ Using Docker

– Install the examples

∗ Install supplementary scripts

• A Backtracking Example

– Use a built-in module script

– Import into your own script

2.1.1 Installation

Install pybacktrack

You can install pybacktrack using:

1. conda, or

2. pip, or

3. Docker.

We recommend using conda since it installs all the dependencies of pybacktrack (using pip currently only installs
some of the dependencies, the rest must be install manually). Using Docker is also more straightforward than pip since
all the dependencies have been pre-installed.

5



pyBacktrack Documentation, Release 1.5.0.dev8

Using conda

We recommend installing pyBacktrack using conda.

To install the latest stable version of pyBacktrack type the following in a terminal or command window (on macOS and
Ubuntu this is a Terminal window, and on Windows you’ll need to open an Anaconda prompt from the Start menu):

conda install -c conda-forge pybacktrack

We recommend installing pyBacktrack into a new conda environment. For example, the following creates and activates
a Python 3.10 environment named pybacktrack_py310 containing pyBacktrack and all its dependencies:

conda create -n pybacktrack_py310 -c conda-forge python=3.10 pybacktrack
conda activate pybacktrack_py310

You can then use pyBacktrack. For example, to see the pyBacktrack version:

python -c "import pybacktrack; print(pybacktrack.__version__)"

Using pip

Python packages installed using pip will typically also have their dependency packages automatically installed also.
However pybacktrack requires manual installation of some of its dependencies.

• Requirements

– Install Python, Pip, GMT and pyGPlates on Ubuntu

– Install Python, Pip, GMT and pyGPlates on Mac using Macports

• Install pybacktrack

Requirements

PyBacktrack depends on:

• NumPy

• SciPy

• Generic Mapping Tools (GMT) (>=5.0.0)

• PyGPlates

NumPy and SciPy are automatically installed by pip when pybacktrack is installed, however GMT (version 5 or above)
and pyGPlates need to be manually installed.

GMT is called via the command-line (shell) and so just needs to be in the PATH in order for pyBacktrack to find it.
Also ensure that version 5 or above (supports NetCDF version 4) is installed since the bundled grid files in pyBacktrack
are in NetCDF4 format.

PyGPlates is not currently installable as a package and so needs to be in the python path (sys.path or PYTHONPATH).
Installation instructions are available here.

6 Chapter 2. Contents

https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://pypi.org/project/pip/
http://www.numpy.org/
https://www.scipy.org/
http://gmt.soest.hawaii.edu/
http://www.gplates.org/
http://www.gplates.org/docs/pygplates/index.html


pyBacktrack Documentation, Release 1.5.0.dev8

PyGPlates supports Python 3 (in addition to Python 2.7) so you can now use pyBacktrack with either. The Macports
install example below shows one approach to selecting the default Python using sudo port select. Another ap-
proach is using Python virtual environments where each environment has its own python, pip and installed packages.
However, currently pyGPlates does not yet work in virtual environments (at least on Mac systems).

Install Python, Pip, GMT and pyGPlates on Ubuntu

This is an example demonstrating how to install GMT and pyGPlates on Ubuntu 18.04 (Bionic).

Note: The main difference for other Ubuntu versions will be the pyGPlates install package (you’ll need to select the
package appropriate for your Ubuntu version).

First install GMT 5:

sudo apt install gmt

Then install Python 3 (and Pip):

sudo apt update

sudo apt install python3 python3-pip
sudo pip3 install --upgrade pip

Then download the pyGPlates Python 3 debian package pygplates_0.36.0_py36_ubuntu-18.04-amd64.deb, and install
it:

sudo apt install ./pygplates_0.36.0_py36_ubuntu-18.04-amd64.deb

Then add the installed location of pyGPlates to the PYTHONPATH environment variable:

export PYTHONPATH=$PYTHONPATH:/usr/lib

Install Python, Pip, GMT and pyGPlates on Mac using Macports

This is an example demonstrating how to install GMT and pyGPlates on a Mac system using Macports.

First install GMT 5:

sudo port install gmt5

Note: You will likely need to add /opt/local/lib/gmt5/bin/ to your PATH environment variable, for example
in your ~/.bashrc, ~/.bash_profile or ~/.zprofile file so that PATH is set each time you open a new terminal
window. After doing this, typing gmt should find GMT and show some help options.

Then install Python 3 (and Pip):

sudo port install python38
sudo port install py38-pip

Set your default python to Python 3.8:

2.1. Getting Started 7

https://www.earthbyte.org/download-pygplates-0-36/
https://www.macports.org/


pyBacktrack Documentation, Release 1.5.0.dev8

sudo port select --set python python38
sudo port select --set pip pip38

Note: If you already have python referencing Python 2 then you can instead use python3 to reference Python 3:

sudo port select --set python3 python38
sudo port select --set pip3 pip38

. . . but this will require using python3 on the command-line to run pybacktrack (instead of just python).

Then download a pyGPlates Mac zip file, such as pygplates_0.36.0_py38_Darwin-x86_64.zip for Python 3.8 on an
Intel Mac, and extract it to your home directory.

Then add the unzipped location of pyGPlates to the PYTHONPATH environment variable, such as:

export PYTHONPATH=~/pygplates_0.36.0_py38_Darwin-x86_64:$PYTHONPATH

Note: The above line can be added to your ~/.bashrc, ~/.bash_profile or ~/.zprofile file so that PYTHON-
PATH is set each time you open a new terminal window.

Install pybacktrack

To install the latest stable version, run:

python -m pip install pybacktrack

Warning:

On Mac systems, when using Macports, it might be better to install to the local user install directory with python
-m pip install --user pybacktrack to avoid confusing Macports (which installs to the system install
directory).
And on linux systems, if you have admin privileges, you can install to the system install directory with sudo
python -m pip install pybacktrack.

Note: We generally recommend using python -m pip install pybacktrack instead of pip install
pybacktrack to ensure pybacktrack is installed into the python you are actually using. For example, when us-
ing Conda Python it might be that python executes the Conda Python interpreter but pip installs into the system
Python (eg, because the base Conda environment is not activated).

If you already have pybacktrack installed and would like to upgrade to the latest version then use the --upgrade
flag:

python -m pip install --upgrade pybacktrack

To install the latest development version (requires Git on local system), run:

8 Chapter 2. Contents

https://www.earthbyte.org/download-pygplates-0-36/
https://www.macports.org/


pyBacktrack Documentation, Release 1.5.0.dev8

python -m pip install "git+https://github.com/EarthByte/pyBacktrack.git#egg=pybacktrack"

Note:

You may need to update your Git if you receive an error ending with tlsv1 alert protocol version.
This is apparently due to an update on GitHub.

. . . or download the pyBacktrack source code, extract to a local directory and run:

python -m pip install <path-to-local-directory>

Note: Installing pyBacktrack will automatically install the NumPy and SciPy requirements. However, as mentioned
in requirements, GMT and pyGPlates still need to be manually installed.

Using Docker

This method of running pybacktrack relies on Docker, so before installing the pybacktrack docker image, ensure
you have installed Docker.

Note:

On Windows platforms you can install Docker Desktop for Windows. Note that Docker Toolbox has been deprecated
(and now Docker Desktop for Windows is recommended).
A similar situation applies on Mac platforms where you can install Docker Desktop for Mac (with Docker Toolbox
being deprecated).

Once Docker is installed, open a terminal (command-line interface).

Note:

For Docker Desktop for Windows and Docker Desktop for Mac this a regular command-line terminal.
Also on Linux systems this a regular command-line terminal.

To install the pybacktrack docker image, type:

docker pull earthbyte/pybacktrack

To run the docker image:

docker run -it --rm -p 18888:8888 -w /usr/src/pybacktrack earthbyte/pybacktrack

This should bring up a command prompt inside the running docker container.
The current working directory should be /usr/src/pybacktrack/.
It should have a pybacktrack_examples sub-directory containing test data.

2.1. Getting Started 9

https://blog.github.com/2018-02-23-weak-cryptographic-standards-removed
https://github.com/EarthByte/pyBacktrack
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/


pyBacktrack Documentation, Release 1.5.0.dev8

Note: On Linux systems you may have to use sudo when running docker commands. For example:

sudo docker pull earthbyte/pybacktrack
sudo docker run -it --rm -p 18888:8888 -w /usr/src/pybacktrack earthbyte/pybacktrack

From the current working directory you can run the backtracking example below, or any other examples in this docu-
mentation. For example, you could run:

python3 -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-
→˓Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

If you wish to run the example notebooks then there is a notebook.sh script to start a Jupyter notebook server in the
running docker container:

./notebook.sh

Then you can start a web browser on your local machine and type the following in the URL field:

http://localhost:18888/tree

This will display the current working directory in the docker container.
In the web browser, navigate to pybacktrack_examples and then notebooks.
Then click on a notebook (such as backtrack.ipynb).
You should be able to run the notebook, or modify it and then run it.

Install the examples

Before running the example below, or any other examples, you’ll also need to install the example data (from the py-
backtrack package itself). This assumes you’ve already installed pybacktrack.

The following command installs the examples (example data and notebooks) to a new sub-directory of your current
working directory called pybacktrack_examples:

python -c "import pybacktrack; pybacktrack.install_examples()"

Note: The current working directory is whatever directory you are in when you run the above command.

Note:

Alternatively you can choose a different sub-directory by providing an argument to the install_examples()
function above.
For example, python -c "import pybacktrack;
pybacktrack.install_examples('pybacktrack/examples')" creates a new sub-directory of your current
working directory called pybacktrack/examples.
However the example below assumes the default directory (pybacktrack_examples).

10 Chapter 2. Contents

https://github.com/EarthByte/pyBacktrack/tree/master/pybacktrack/notebooks
https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/backtrack.ipynb


pyBacktrack Documentation, Release 1.5.0.dev8

Install supplementary scripts

You can optionally install supplementary scripts. These are not necessary for running the pybacktrack module.
They are various pre/post processing, conversion and test scripts that have only been included for reference (for those
interested).

The following command installs the supplementary scripts to a new sub-directory of your current working directory
called pybacktrack_supplementary:

python -c "import pybacktrack; pybacktrack.install_supplementary()"

Note: Like the examples you can specify your own sub-directory.

2.1.2 A Backtracking Example

Once installed, pybacktrack is available to:

1. run built-in scripts (inside pybacktrack), or

2. import pybacktrack into your own script.

The following example is used to demonstrate both approaches. It backtracks an ocean drill site and saves the output
to a text file by:

• reading the ocean drill site file pybacktrack_examples/example_data/ODP-114-699-Lithology.txt,

Note:

This file is part of the example data.
However if you have your own ocean drill site file then you can substitute it in the example below if you want.

• backtracking it using:

– the M2 dynamic topography model, and

– the Haq87_SealevelCurve_Longterm sea-level model,

• writing the amended drill site to ODP-114-699_backtrack_amended.txt, and

• writing the following columns to ODP-114-699_backtrack_decompacted.txt:

– age

– compacted_depth

– compacted_thickness

– decompacted_thickness

– decompacted_density

– decompacted_sediment_rate

– decompacted_depth

– dynamic_topography

– water_depth

– tectonic_subsidence

2.1. Getting Started 11



pyBacktrack Documentation, Release 1.5.0.dev8

– lithology

Use a built-in module script

Since there is a backtrack module inside pybacktrack that can be run as a script, we can invoke it on the command-
line using python -m pybacktrack.backtrack_cli followed by command line options that are specific to that
module. This is the easiest way to run backtracking.

To see its command-line options, run:

python -m pybacktrack.backtrack_cli --help

The backtracking example can now be demonstrated by running the script as:

python -m pybacktrack.backtrack_cli \
-w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt \
-d age compacted_depth compacted_thickness decompacted_thickness decompacted_density␣

→˓decompacted_sediment_rate decompacted_depth dynamic_topography water_depth tectonic_
→˓subsidence lithology \

-ym M2 \
-slm Haq87_SealevelCurve_Longterm \
-o ODP-114-699_backtrack_amended.txt \
-- \
ODP-114-699_backtrack_decompacted.txt

Import into your own script

An alternative to running a built-in script is to write your own script (using a text editor) that imports pybacktrack and
calls its functions. You might do this if you want to combine pyBacktrack functionality with other research functionality
into a single script.

The following Python code does the same as the built-in script by calling the pybacktrack.
backtrack_and_write_well() function:

import pybacktrack

# Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt'
amended_well_output_filename = 'ODP-114-699_backtrack_amended.txt'
decompacted_output_filename = 'ODP-114-699_backtrack_decompacted.txt'

# Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backtrack_and_write_well(

decompacted_output_filename,
input_well_filename,
dynamic_topography_model='M2',
sea_level_model='Haq87_SealevelCurve_Longterm',
# The columns in decompacted output file...
decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,

pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH,
pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY,

(continues on next page)

12 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH,
pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY,
pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH,
pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE,
pybacktrack.BACKTRACK_COLUMN_LITHOLOGY],

# Might be an extra stratigraphic well layer added from well bottom to ocean␣
→˓basement...

ammended_well_output_filename=amended_well_output_filename)

If you save the above code to a file called my_backtrack_script.py then you can run it as:

python my_backtrack_script.py

2.2 Overview

This document gives a brief overview of the scripts inside the pybacktrack package.

• Running pyBacktrack

• Running the scripts built into pyBacktrack

– backtrack

– backstrip

– paleo_bathymetry

– age_to_depth

– stratigraphic_depth_to_age

– interpolate

• Running your own script that imports pyBacktrack

– backtrack

– backstrip

– paleo_bathymetry

– age_to_depth

– stratigraphic_depth_to_age

– interpolate

2.2. Overview 13



pyBacktrack Documentation, Release 1.5.0.dev8

2.2.1 Running pyBacktrack

Once installed, the pybacktrack Python package is available to:

1. run built-in scripts (inside pybacktrack), or

2. import pybacktrack into your own script.

It is generally easier to run the built-in scripts since you only need to specify parameters on the command-line.

However you may need to create your own script if you want to combine pybacktrack functionality with other research
functionality. In this case it is generally better to import pybacktrack, along with the other modules, into your own
script. This also gives a finer granularity of control compared to the command-line.

The following two sections give an overview of both approaches.

Note:

The input files used in the examples below (except interpolate) are available in the example data.
Please ensure you have installed the example data before running any of these examples.

2.2.2 Running the scripts built into pyBacktrack

PyBacktrack is a Python package containing modules. And each module can be run as a script using python -m
pybacktrack.<module>_cli followed by command line options that are specific to that module. For example, the
backtrack module can be run as python -m pybacktrack.backtrack_cli ..., or the backstrip module can
be run as python -m pybacktrack.backstrip_cli ..., with ... replaced by command-line options.

The following sections give an introduction to each module.

Note: In each module you can use the --help option to see all available command-line options for that specific
module. For example, python -m pybacktrack.backtrack_cli --help describes all options available to the
backtrack module.

backtrack

The backtrack module is used to find paleo water depths from a tectonic subsidence model (such as an age-to-depth
curve in ocean basins, or rifting near continental passive margins) and sediment decompaction over time.

This example takes an ocean drill site as input and outputs a file containing a backtracked water depth for each age in
the drill site:

python -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-
→˓Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

. . .where the -w option specifies the input drill site file pybacktrack_examples/example_data/
ODP-114-699-Lithology.txt, the -d option specifies the desired columns (age and water_depth) of the
output file, and ODP-114-699_backtrack_decompacted.txt is the output file.

There are other command-line options available to the backtrack module (use the --help option to list them) but
they all have default values and hence only need to be specified if the default does not suit.

See also:

Backtrack

14 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

backstrip

The backstrip module is used to find tectonic subsidence (typically due to lithospheric stretching) from paleo water
depths and sediment decompaction over time.

This example takes a passive margin site as input and outputs a file containing a backstripped tectonic subsidence for
each age in the drill site:

python -m pybacktrack.backstrip_cli -w pybacktrack_examples/example_data/sunrise_
→˓lithology.txt -l primary extended -d age average_tectonic_subsidence -- sunrise_
→˓backstrip_decompacted.txt

. . .where the -w option specifies the input drill site file pybacktrack_examples/example_data/
sunrise_lithology.txt, the -l option specifies the lithology definitions, the -d option specifies the desired
columns (age and average_tectonic_subsidence) of the output file, and sunrise_backstrip_decompacted.
txt is the output file.

Note: It is necessary to specify the bundled primary and extended lithology definitions, with -l primary
extended, because the input drill site references lithologies in both lithology definition files. See Bundled lithol-
ogy definitions. This is unlike the backtracking example above that only references the primary lithologies, and hence
does not need to specify lithology definitions because primary is the default (when -l is not specified).

Note: average_tectonic_subsidence is an average of the minimum and maximum tectonic subsidences, that are
in turn a result of the minimum and maximum water depths specified in the drill site file.

There are other command-line options available to the backstrip module (use the --help option to list them) but
they all have default values and hence only need to be specified if the default does not suit.

See also:

Backstrip

paleo_bathymetry

The paleo_bathymetry module is used to generate paleo bathymetry grids by reconstructing and backtracking
present-day sediment-covered crust through time.

This example generates paleobathymetry grids at 12 minute resolution from 0Ma to 240Ma in 1Myr increments using
the M7 dynamic topography model and the GDH1 oceanic subsidence model:

python -m pybacktrack.paleo_bathymetry_cli -gm 12 -ym M7 -m GDH1 --use_all_cpus -- 240␣
→˓paleo_bathymetry_12m_M7_GDH1

. . .where the -gm option specifies the grid spacing (in minutes), the -ym specifies the dynamic topogra-
phy model, the -m option specifies the oceanic subsidence model, the --use_all_cpus option uses all
CPUs (it also accepts an optional number of CPUs) and the generated paleobathymetry grid files are named
paleo_bathymetry_12m_M7_GDH1_<time>.nc.

There are other command-line options available to the paleo_bathymetry module (use the --help option to list
them) but they all have default values and hence only need to be specified if the default does not suit.

See also:

Paleobathymetry

2.2. Overview 15



pyBacktrack Documentation, Release 1.5.0.dev8

age_to_depth

The age_to_depth module is used to convert ocean floor age to ocean basement depth (in ocean basins).

This example takes an input file containing a column of ages, and outputs a file containing two columns (age and depth):

python -m pybacktrack.age_to_depth_cli -- pybacktrack_examples/example_data/ages.txt␣
→˓ages_and_depths.txt

Here the input file pybacktrack_examples/example_data/ages.txt contains ages in the first (and only) column.
If they had been in another column, for example if there were other unused columns, then we would need to specify the
age column with the -a option.

The output file ages_and_depths.txt contains ages in the first column and depths in the second column. To reverse
this order you can use the -r option.

There are three built-in age-to-depth ocean models:

• RHCW18 - Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere system

• CROSBY_2007 - Crosby, A.G., (2007) Aspects of the relationship between topography and gravity on the Earth
and Moon, PhD thesis

• GDH1 - Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with lithospheric age

Here the conversion was performed using the default model RHCW18 since the -m command-line option was not speci-
fied. However you can specify the alternate CROSBY_2007 model using -m CROSBY_2007 (or GDH1 using -m GDH1).

Note: The default age-to-depth model was updated in pyBacktrack version 1.4. It is now RHCW18. Previously it was
GDH1.

Or you can use your own age-to-depth model by specifying a file containing an age column and a depth column followed
by two integers representing the age and depth column indices. For example, if you have your own age-to-depth file
called age-depth-model.txt where age is in the first column and depth is in the second column then you can specify
this using -w age-depth-model.txt 0 1.

Note: Use python -m pybacktrack.age_to_depth_cli --help to see a description of all command-line op-
tions.

stratigraphic_depth_to_age

The stratigraphic_depth_to_age module is used to convert stratigraphic depths to ages using a depth-to-age
model.

Here the depth-to-age model is specified as a file containing a column of ages and a column of depths that forms a
piecewise linear function of age with depth (a model where age is a function of depth age=function(depth)). Then
another file specifies the input stratigraphic depths that you wish to convert to ages. Finally a third file is created
containing the input depths and output ages, where each interpolated output age is a result of querying the piecewise
linear function using the input depth:

python -m pybacktrack.stratigraphic_depth_to_age_cli -m pybacktrack_examples/example_
→˓data/Site1089B_age_depth.txt -- pybacktrack_examples/example_data/Site1089B_strat_
→˓depth.txt Site1089B_age_strat_depth.txt

16 Chapter 2. Contents

https://doi.org/10.1016/j.pepi.2020.106559
https://doi.org/10.1038/359123a0


pyBacktrack Documentation, Release 1.5.0.dev8

Here the age=function(depth) model is specified with the -m option, where the pybacktrack_examples/
example_data/Site1089B_age_depth.txt file contains a column of ages and a column of depths. By
default, age is the first column and depth the second but you can optionally choose any column by specifying
two integers representing the age and depth column indices in the -m option. For example, you can change
-m pybacktrack_examples/example_data/Site1089B_age_depth.txt to -m pybacktrack_examples/
example_data/Site1089B_age_depth.txt 1 0 to select the second column (index 1) for age and the first column
(index 0) for depth.

The input stratigraphic depths are in pybacktrack_examples/example_data/Site1089B_strat_depth.txt and
must be in the first column. Any text after the depth value in a row (eg, lithologies) is copied to the output file. Also
any metadata at the top of the file is copied to the output file.

The interpolated ages and associated depths are written to the output file Site1089B_age_strat_depth.txt. The
first column contains (interpolated) age and the second column contains depth. To reverse this order you can use the
-r option.

Note: The output file Site1089B_age_strat_depth.txt does not contain rows for depths that are outside the
depth range of the model Site1089B_age_depth.txt. This is the default behaviour. You can change this using the
-m option which, in addition to specifying optional age and depth column indices, allows you to optionally specify how
to handle out-of-bounds depth values with exclude (to exclude rows outside depth range), clamp (to use boundary
age values) or extrapolate (to extrapolate age from boundary).

Note: Use python -m pybacktrack.stratigraphic_depth_to_age_cli --help to see a description of all
command-line options.

interpolate

The interpolate module can perform linear interpolation of any piecewise linear function y=f(x). As such it can
be used for any type of data.

Here the y=f(x) model is specified as a file containing a column of x values and a column of y values that forms
a piecewise linear function of y with x. Then another file specifies the input x values. Finally a third file is created
containing the input x values and the output y values, where each interpolated output y value is a result of querying the
piecewise linear function using an input x value:

python -m pybacktrack.util.interpolate_cli -cx 1 -cy 0 -c function_y_of_x.txt -- input_x_
→˓values.txt output_x_y_values.txt

Note: These files, specifically function_y_of_x.txt and input_x_values.txt, do not exist in the example data.
They are just placeholders for your own data that you would like to interpolate.

Here the y=f(x) model is specified with the -c, -cx and -cy options. The -c option specifies the file
function_y_of_x.txt containing a column of y values followed by a column of x values. The -cx and -cy options
specify the x and y columns of the model function y=f(x). These default to 0 and 1 respectively. However if y happens
to be in the first column (0) and x in the second column (1) then you can swap the default order of column indices using
-cx 1 -cy 0.

The input x values are in input_x_values.txt in the first column (by default). If they had been in another column,
for example if there were other unused columns, then we would need to specify the x column with the -ix option.

2.2. Overview 17



pyBacktrack Documentation, Release 1.5.0.dev8

The output (interpolated) y values (and associated x values) are written to the output file output_x_y_values.txt.
The first column contains the x values and the second column contains the (interpolated) y values. To reverse this order
you can use the -r option.

Note: Use python -m pybacktrack.util.interpolate_cli --help to see a description of all command-line
options.

2.2.3 Running your own script that imports pyBacktrack

An alternative to running the built-in scripts is to write your own script (using a text editor) that imports pybacktrack
and calls its functions. You might do this if you want to combine pyBacktrack functionality with other research func-
tionality into a single script.

The following shows Python source code that is equivalent to the above examples running built-in scripts.

If you save any of the code examples below to a file called my_script.py then you can run that example as:

python my_script.py

backtrack

The following Python source code (using these functions):

import pybacktrack

pybacktrack.backtrack_and_write_well(
'ODP-114-699_backtrack_decompacted.txt',
'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt',
decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,

pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH])

. . . is equivalent to running the backtrack script example:

python -m pybacktrack.backtrack_cli -w pybacktrack_examples/example_data/ODP-114-699-
→˓Lithology.txt -d age water_depth -- ODP-114-699_backtrack_decompacted.txt

Note: The backtrack module is covered in more detail here.

backstrip

The following Python source code (using these functions):

import pybacktrack

pybacktrack.backstrip_and_write_well(
'sunrise_backstrip_decompacted.txt',
'pybacktrack_examples/example_data/sunrise_lithology.txt',
lithology_filenames=[pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME,

pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME],
(continues on next page)

18 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

decompacted_columns=[pybacktrack.BACKSTRIP_COLUMN_AGE,
pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE])

. . . is equivalent to running the backstrip script example:

python -m pybacktrack.backstrip_cli -w pybacktrack_examples/example_data/sunrise_
→˓lithology.txt -l primary extended -d age average_tectonic_subsidence -- sunrise_
→˓backstrip_decompacted.txt

Note: The backstrip module is covered in more detail here.

paleo_bathymetry

The following Python source code (using these functions):

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(
'paleo_bathymetry_12m_M7_GDH1',
0.2, # degrees (same as 12 minutes)
240,
dynamic_topography_model='M7',
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_MODEL_GDH1,
use_all_cpus=True) # can also be an integer (the number of CPUs to use)

. . . is equivalent to running the paleobathymetry script example:

python -m pybacktrack.paleo_bathymetry_cli -gm 12 -ym M7 -m GDH1 --use_all_cpus -- 240␣
→˓paleo_bathymetry_12m_M7_GDH1

Note: The paleo_bathymetry module is covered in more detail here.

age_to_depth

The following Python source code (using these functions):

import pybacktrack

pybacktrack.convert_age_to_depth_files(
'pybacktrack_examples/example_data/ages.txt',
'ages_and_depths.txt')

. . . is equivalent to running the age-to-depth script example:

python -m pybacktrack.age_to_depth_cli -- pybacktrack_examples/example_data/ages.txt␣
→˓ages_and_depths.txt

2.2. Overview 19



pyBacktrack Documentation, Release 1.5.0.dev8

stratigraphic_depth_to_age

The following Python source code (using these functions):

import pybacktrack

# Read the age=f(depth) function, where 'x' is depth and 'y' is age (in the returned␣
→˓function y=f(x)).
age_column_index = 0 # age is in the first column
depth_column_index = 1 # depth is in the second column
# This determines the age values for depth values outside the depth range of the depth-
→˓to-model model.
# It can be 'exclude' to exclude age values outside range, or 'clamp' to use boundary age␣
→˓values, or 'extrapolate' to extrapolate age from boundary.
# Here we use 'exclude' (instead of the default 'clamp') to avoid getting the same age␣
→˓value for different depth values (outside depth range).
out_of_bounds = 'exclude'
# Ignore the x (depth) and y (age) values read from file by using '_'.
depth_to_age_model, _, _ = pybacktrack.read_interpolate_function('pybacktrack_examples/
→˓example_data/Site1089B_age_depth.txt', depth_column_index, age_column_index, out_of_
→˓bounds)

# Convert depth values in input file to age and depth values in output file.
pybacktrack.convert_stratigraphic_depth_to_age_files(

'pybacktrack_examples/example_data/Site1089B_strat_depth.txt',
'Site1089B_age_strat_depth.txt',
depth_to_age_model)

. . . is equivalent to running the stratigraphic depth-to-age script example:

python -m pybacktrack.stratigraphic_depth_to_age_cli -m pybacktrack_examples/example_
→˓data/Site1089B_age_depth.txt -- pybacktrack_examples/example_data/Site1089B_strat_
→˓depth.txt Site1089B_age_strat_depth.txt

interpolate

The following Python source code (using these functions):

import pybacktrack

# Read the y=f(x) function from a 2-column file.
# Ignore the x and y values read from file by using '_'.
function_y_of_x, _, _ = pybacktrack.read_interpolate_function('function_y_of_x.txt', 1,␣
→˓0)

# Convert x values in a 1-column input file to x and y values in a 2-column output file.
pybacktrack.interpolate_file(

function_y_of_x,
'input_x_values.txt',
'output_x_y_values.txt')

. . . is equivalent to running the interpolate script example:

20 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

python -m pybacktrack.util.interpolate_cli -cx 1 -cy 0 -c function_y_of_x.txt -- input_x_
→˓values.txt output_x_y_values.txt

2.3 Stratigraphy

This document covers drill site stratigraphy, and lithology names that reference lithology definitions of density, surface
porosity and porosity decay.

• Drill site

– Backtracking versus backstripping sites

– Drill site file format

– Base sediment layer

– Geohistory analysis

• Lithology Definitions

– Bundled lithology definitions

– Lithology file format

– Specifying lithology definitions

– Conflicting lithology definitions

2.3.1 Drill site

Both backtracking and backstripping involve sediment decompaction over time. So the main input file for backtracking
and backstripping is a drill site. It provides a record of the present-day litho-stratigraphy of the sediment sitting on top
of the submerged oceanic or continental crust.

The difference between backtracking and backstripping is whether recorded paleo-water depths are recorded in the
drill site file. When there are no recorded paleo-water depths, backtracking uses a known model of tectonic subsi-
dence (oceanic or continental) to determine the unknown paleo-water depths. Conversely, when there is a record of
paleo-water depths, backstripping uses these known paleo-water depths to determine the unknown history of tectonic
subsidence.

Backtracking versus backstripping sites

ODP drill site 699 is located on deep ocean crust and has no recorded paleo-water depths:

# SiteLongitude = -30.677
# SiteLatitude = -51.542
# SurfaceAge = 0

## bottom_age bottom_depth lithology
18.7 85.7 Diatomite 0.7 Clay 0.3
25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
31.9 243.1 Sand 1

(continues on next page)

2.3. Stratigraphy 21



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
40.8 382.6 Chalk 1
54.5 496.6 Chalk 1
55.3 516.3 Chalk 0.5 Clay 0.5

So it is suitable for backtracking, to find the unknown paleo-water depths.

In contrast, the sunrise drill site is located on shallower continental crust and has a record of paleo-water depths:

# SiteLatitude = -9.5901
# SiteLongitude = 128.1538
# SurfaceAge = 0.0000
#
## bottom_age bottom_depth min_water_depth max_water_depth lithology

2.000 462.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

10.000 525.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

24.000 822.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.80 Sand 0.10

30.000 1062.000 0.000 100.000 Shale 0.30 ␣
→˓Limestone 0.55 Dolostone 0.05 Sand 0.10

34.000 1086.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.10 Sand 0.70

45.000 1366.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.75 Dolostone 0.05 Sand 0.10

58.000 1442.000 0.000 100.000 Shale 0.15 ␣
→˓Limestone 0.15 Sand 0.70

68.000 1494.000 50.000 200.000 Shale 0.45 ␣
→˓Limestone 0.50 Sand 0.05

83.000 1521.000 20.000 200.000 Shale 0.30 ␣
→˓Limestone 0.65 Sand 0.05

86.000 1545.000 20.000 200.000 Shale 0.55 ␣
→˓Limestone 0.35 Sand 0.10

88.000 1582.000 20.000 200.000 Shale 0.35 ␣
→˓Limestone 0.65

90.000 1620.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

95.000 1890.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

100.000 2036.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

107.000 2062.000 20.000 200.000 Shale 0.64 ␣
→˓Limestone 0.18 Sand 0.18

125.000 2066.000 0.000 100.000 Shale 0.40 ␣
→˓Chalk 0.10 Sand 0.50

160.000 2068.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

165.000 2130.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

170.000 2176.000 0.000 100.000 Shale 0.50 ␣
→˓Sand 0.50

177.000 2187.000 -10.000 25.000 Shale 0.30 ␣
(continues on next page)

22 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓Sand 0.70
180.000 2237.000 -10.000 25.000 Shale 0.30 ␣

→˓Sand 0.70
190.000 2311.000 -10.000 20.000 Shale 0.30 ␣

→˓Sand 0.70

So it is suitable for backstripping, to find the unknown history of tectonic subsidence. Note that this site records
the paleo-water depths as two extra columns, for the minimum and maximum water depths. Backstripping will then
use these paleo-water depths, along with sediment decompaction, to reveal the complex tectonic subsidence of rift
stretching at the site location.

Note: It is possible, although perhaps not desirable, to backtrack (instead of backstrip) the sunrise drill site to pro-
vide simulated paleo-water depths via a built-in model of continental rift stretching. This would involve ignoring the
recorded paleo-water depth columns (using the -c option of backtrack) and supplying the start and end times of rifting
(using the -rs and -re options of backtrack).

Drill site file format

As seen in the Backtracking versus backstripping sites, the file format of drill sites consist of two main sections. The
top section specifies the attributes of the drill site, and the bottom section specifies the stratigraphic layers.

The attributes SiteLongitude and SiteLatitude specify the drill site location (in degrees).

Note: If SiteLongitude and SiteLatitude are not specified then they must be specified directly in the back-
track or backstrip module using the -w command-line option, or the well_location argument of the pybacktrack.
backtrack_and_write_well() or pybacktrack.backstrip_and_write_well() function.

For each stratigraphic layer in the drill site there is a mixture of lithologies representing the stratigraphic composition
of that layer. Each lithology (in a layer) is identified by a lithology name and the fraction it contributes to the layer
(where all the fractions must add up to 1.0). Each lithology name is used to look up a list of lithology definitions to
obtain lithology density, surface porosity and porosity decay.

For each stratigraphic layer in the drill site there is also an age (Ma) and a depth (m) representing the bottom of that
layer. The top age and depth of each layer is the bottom age and depth of the layer above. Since the surface (top)
layer has no layer above it, the top age and depth of the surface layer are 0Ma and 0m respectively. However, if the
SurfaceAge attribute is specified then it replaces the top age of the surface layer. A non-zero value of SurfaceAge
implies that sediment deposition ended prior to present day. In other words, it represents the age of the total sediment
surface.

Note: The SurfaceAge attribute is optional, and defaults to 0Ma if not specified.

2.3. Stratigraphy 23



pyBacktrack Documentation, Release 1.5.0.dev8

Base sediment layer

It is also possible that the sediment thickness recorded at the drill site is less than the total sediment thickness. This
happens when the drill site does not penetrate all the way to the basement depth of oceanic or continental crust. In this
situation a base stratigraphic layer is automatically added during backtracking and backstripping to represent sediment
from the bottom of the drill site down to the basement depth of oceanic or continental crust.

For backtracking, the bottom age of this new base layer is the age of oceanic crust if the drill site is on ocean crust, or the
age that rifting starts if the drill site is on continental crust (since it is assumed that deposition began when continental
stretching started) - see backtrack for more details.

For backstripping, the bottom age of this new base layer is simply duplicated from the age at the bottom of the drill
site (ie, bottom age of deepest stratigraphic layer). This is because, unlike backtracking, we don’t know the age of the
crust. But this is fine since the decompacted output only uses the top age of each layer. And the decompacted sediment
thickness/density (and hence the tectonic subsidence) still takes into account the base sediment layer and hence the
total sediment thickness. Also since backstripping requires min/max recorded paleo-water depths for each layer, these
are simply duplicated from the bottom layer of the drill site to the new base layer.

By default the lithology of the base layer is Shale, but can be changed using the -b command-line option in the
backtrack and backstrip modules. To determine the total sediment thickness, a grid is sampled at the drill site location.
The default grid is bundled inside pybacktrack. However, you can override this with your own grid by using the -s
command-line option in the backtrack and backstrip modules.

The default total sediment thickness grid is:

• Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., et al. (2019). GlobSed:
Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems, 20. DOI:
10.1029/2018GC008115

Note: The default total sediment thickness grid was updated in pyBacktrack version 1.4.

Warning: If the drill site thickness happens to exceed the total sediment thickness then no base layer is added,
and a warning is emitted to standard error on the console. This can happen as a result of uncertainties in the
sediment thickness grid.

You can optionally write out an amended drill site file that adds this base sediment layer. This is useful when you want
to know the basement depth at the drill site location.

For example, backtracking the ODP drill site 699 (located on ocean crust):

# SiteLongitude = -30.677
# SiteLatitude = -51.542
# SurfaceAge = 0

## bottom_age bottom_depth lithology
18.7 85.7 Diatomite 0.7 Clay 0.3
25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
31.9 243.1 Sand 1
36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
40.8 382.6 Chalk 1
54.5 496.6 Chalk 1
55.3 516.3 Chalk 0.5 Clay 0.5

24 Chapter 2. Contents

https://doi.org/10.1029/2018GC008115
https://doi.org/10.1029/2018GC008115


pyBacktrack Documentation, Release 1.5.0.dev8

. . . generates the following amended drill site file:

# SiteLatitude = -51.5420
# SiteLongitude = -30.6770
# SurfaceAge = 0.0000
#
## bottom_age bottom_depth lithology

18.700 85.700 Diatomite 0.70 Clay 0.30
25.000 142.000 Coccolith_ooze 0.30 Diatomite 0.50 Mud ␣

→˓ 0.20
31.300 233.600 Coccolith_ooze 0.30 Diatomite 0.70
31.900 243.100 Sand 1.00
36.700 335.400 Coccolith_ooze 0.80 Diatomite 0.20
40.800 382.600 Chalk 1.00
54.500 496.600 Chalk 1.00
55.300 516.300 Chalk 0.50 Clay 0.50
79.133 601.000 Shale 1.00

. . . containing the extra base shale layer with a bottom age equal to the age grid sampled at the drill site and a bottom
depth equal to the total sediment thickness.

Note: To output an amended drill site file, specify the amended output filename using the -o command-line option in
the backtrack or backstrip module.

Geohistory analysis

The Decompacting Stratigraphic Layers notebook shows how to visualize the decompaction of stratigraphic layers at a
drill site.

Note: The example notebooks are installed as part of the example data which can be installed by following these
instructions.

That notebook decompacts drill sites in the context of backtracking and backstripping (covered in later sections), but
regardless of whether we’re backstripping or backtracking we are still decompacting the sediment layers in the same
way. The following image (from that notebook) shows the decompaction of a shallow continental drill site over time.

2.3.2 Lithology Definitions

The stratigraphy layers in a drill site contain lithology names that reference lithology definitions. Each lithology defi-
nition contains a density, a surface porosity and a porosity decay.

These definitions are stored in lithology files.

2.3. Stratigraphy 25

https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb


pyBacktrack Documentation, Release 1.5.0.dev8

26 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Bundled lithology definitions

There are two lithology files currently bundled inside pybacktrack, one containing primary lithologies and the other
extended lithologies.

The primary lithologies (inside pybacktrack) contains the deep-sea lithologies listed in Table 1 in the pyBacktrack
paper:

• Muller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018, PyBacktrack 1.0: A Tool for Reconstructing
Paleobathymetry on Oceanic and Continental Crust, Geochemistry, Geophysics, Geosystems, 19, 1898-1909,
doi: 10.1029/2017GC007313.

# name density porosity decay
# kg/m3 (%/100) m
#
Average_ocean_floor_sediment 2647 0.66 1333 # Kominz et al. [2011]
Basalt 2700 0.2 5000 # Turer and Maynard␣
→˓[2003]
Biogenic_sand 2710 0.89 1338 # Kominz et al. [2011]
Carbonate_sand 2710 0.48 3990 # Goldhammer [1997]
Chalk 2710 0.7 1408 # Sclater and␣
→˓Christie [1980]
Clay 2735 0.76 1252 # Kominz et al. [2011]
Coccolith_ooze 2710 0.59 1660 # Kominz et al. [2011]
Diatomite 2457 0.84 436 # Kominz et al. [2011]
Dolomite 2870 0.38 1986 # Schmoker and Halley␣
→˓[1982]
Limestone 2850 0.51 4545 # Turer and Maynard␣
→˓[2003]
Micrite 2710 0.69 1135 # Kominz et al. [2011]
Mud 2438 0.36 2015 # Van Sickel et al.␣
→˓[2004]
Sand 2650 0.49 3704 # Sclater and␣
→˓Christie [1980]
Shale 2700 0.63 1960 # Sclater and␣
→˓Christie [1980]
Shaley_sand 2680 0.56 2564 # Sclater and␣
→˓Christie [1980]
Silt 2661 0.76 1091 # Kominz et al. [2011]

And the extended lithologies (inside pybacktrack) mostly contain shallow-water lithologies:

• Baldwin, S., 1999, Quantifying the development of a deep sedimentary basin: the Bonaparte Basin, NW Aus-
tralia, PhD Thesis, Univ. of Cambridge.

# name density porosity decay
# kg/m3 (%/100) m
#
Anhydrite 2960 0.40 500
Chert 1929 0.65 2850
Conglomerate 3500 0.48 2700
Dolostone 2700 0.48 3500
Grainstone 2700 0.48 3500
Reef 2700 0.10 3500
Rhyolite 2820 0.20 2700

(continues on next page)

2.3. Stratigraphy 27

https://doi.org/10.1029/2017GC007313
https://doi.org/10.1029/2017GC007313


pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

Salt 2160 0.20 750

Lithology file format

As seen in the bundled lithology definitions, the first column is the lithology name. The second column is the lithology’s
sediment density (kg/m3). The third column is the surface porosity as a fraction, and fourth column is porosity decay
(m).

Note: You can also use your own lithology files provided they use this format.

Porosity is the contribution of water to the sediment volume and decays exponentially with depth according to the decay
constant (since sediment compaction increases with depth and squeezes out more water from between the sediment
grains).

Specifying lithology definitions

Any number of lithology files can be specified. In the backtrack and backstrip modules these are specified using the -l
command-line option. With this option you can specify one or more lithologies files including the bundled lithologies.
To specify the bundled primary and extended lithologies you specify primary and extended. And to specify your
own lithology files you provide the entire filename as usual. If you don’t specify the -l option then it defaults to using
only the primary lithologies (extended lithologies are not included by default).

Note:

If you don’t use the -l option then only the primary lithologies will be included (they are the default).
However if you use the -l option but do not specify primary then the primary lithologies will not be included.

Conflicting lithology definitions

When specifying more than one lithology file it is possible to have conflicting definitions. This occurs when two
or more lithology files contain the same lithology name but have different values for its density, surface poros-
ity or porosity decay. When there is a conflict, the lithology definition is taken from the last conflicting lithol-
ogy file specified. For example, if you specify -l primary my_conflicting_lithologies.txt then conflict-
ing lithologies in my_conflicting_lithologies.txt override those in primary. However, specifying the re-
verse order with -l my_conflicting_lithologies.txt primary will result in primary overriding those in
my_conflicting_lithologies.txt.

2.4 Backtrack

• Overview

• Running backtrack

– Example

• Backtrack output

28 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

– Amended drill site output

– Decompacted output

• Sea level variation

• Oceanic and continental tectonic subsidence

– Oceanic versus continental drill sites

– Present-day tectonic subsidence

• Oceanic subsidence

• Continental subsidence

• Dynamic topography

• Geohistory analysis

– Continental subsidence

– Oceanic subsidence

2.4.1 Overview

The backtrack module is used to find paleo water depths from a tectonic subsidence model, and sediment decom-
paction over time. The tectonic subsidence model is either an age-to-depth curve (in ocean basins) or rifting (near
continental passive margins).

2.4.2 Running backtrack

You can either run backtrack as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.backtrack_cli ...

. . . or import pybacktrack into your own script, calling its functions and specifying parameters as function argu-
ments (...):

import pybacktrack

pybacktrack.backtrack_and_write_well(...)

Note: You can run python -m pybacktrack.backtrack_cli --help to see a description of all command-line
options available, or see the backtracking reference section for documentation on the function parameters.

2.4. Backtrack 29



pyBacktrack Documentation, Release 1.5.0.dev8

Example

For example, revisiting our backtracking example, we can run it from the command-line as:

python -m pybacktrack.backtrack_cli \
-w pybacktrack_examples/example_data/ODP-114-699-Lithology.txt \
-d age compacted_depth compacted_thickness decompacted_thickness decompacted_density␣

→˓decompacted_sediment_rate decompacted_depth dynamic_topography water_depth tectonic_
→˓subsidence lithology \

-ym M2 \
-slm Haq87_SealevelCurve_Longterm \
-o ODP-114-699_backtrack_amended.txt \
-- \
ODP-114-699_backtrack_decompacted.txt

. . . or write some Python code to do the same thing:

import pybacktrack

# Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/ODP-114-699-Lithology.txt'
amended_well_output_filename = 'ODP-114-699_backtrack_amended.txt'
decompacted_output_filename = 'ODP-114-699_backtrack_decompacted.txt'

# Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backtrack_and_write_well(

decompacted_output_filename,
input_well_filename,
dynamic_topography_model='M2',
sea_level_model='Haq87_SealevelCurve_Longterm',
# The columns in decompacted output file...
decompacted_columns=[pybacktrack.BACKTRACK_COLUMN_AGE,

pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH,
pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE,
pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH,
pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY,
pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH,
pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE,
pybacktrack.BACKTRACK_COLUMN_LITHOLOGY],

# Might be an extra stratigraphic well layer added from well bottom to ocean␣
→˓basement...

ammended_well_output_filename=amended_well_output_filename)

Note: The drill site file pybacktrack_examples/example_data/ODP-114-699-Lithology.txt is part of the
example data.

30 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

2.4.3 Backtrack output

For each stratigraphic layer in the input drill site file, backtrack can write one or more parameters to an output file.

Running the above example on ODP drill site 699:

# SiteLongitude = -30.677
# SiteLatitude = -51.542
# SurfaceAge = 0

## bottom_age bottom_depth lithology
18.7 85.7 Diatomite 0.7 Clay 0.3
25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
31.9 243.1 Sand 1
36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
40.8 382.6 Chalk 1
54.5 496.6 Chalk 1
55.3 516.3 Chalk 0.5 Clay 0.5

. . . produces an amended drill site output file containing an extra base sediment layer, and a decompacted output file
containing the decompacted output parameters like sediment thickness and water depth.

Amended drill site output

The amended drill site output file:

# SiteLatitude = -51.5420
# SiteLongitude = -30.6770
# SurfaceAge = 0.0000
#
## bottom_age bottom_depth lithology

18.700 85.700 Diatomite 0.70 Clay 0.30
25.000 142.000 Coccolith_ooze 0.30 Diatomite 0.50 Mud ␣

→˓ 0.20
31.300 233.600 Coccolith_ooze 0.30 Diatomite 0.70
31.900 243.100 Sand 1.00
36.700 335.400 Coccolith_ooze 0.80 Diatomite 0.20
40.800 382.600 Chalk 1.00
54.500 496.600 Chalk 1.00
55.300 516.300 Chalk 0.50 Clay 0.50
79.133 601.000 Shale 1.00

There is an extra base sediment layer that extends from the bottom of the drill site (516.3 metres) to the total sediment
thickness (601 metres). The bottom age of this new base layer (86.79 Ma) is the age of oceanic crust that ODP drill
site 699 is on. If it had been on continental crust (near a passive margin such as DSDP drill site 327) then the bottom
age of this new base layer would have been when rifting started (since we would have assumed deposition began when
continental stretching began).

See also:

Base sediment layer and Oceanic versus continental drill sites

2.4. Backtrack 31



pyBacktrack Documentation, Release 1.5.0.dev8

Decompacted output

The decompacted output file:

# SiteLatitude = -51.5420
# SiteLongitude = -30.6770
# SurfaceAge = 0.0000
#
# age compacted_depth compacted_thickness decompacted_thickness decompacted_
→˓density decompacted_sediment_rate decompacted_depth dynamic_topography water_depth␣
→˓tectonic_subsidence lithology
0.000 0.000 601.000 601.000 1726.994 ␣

→˓ 5.810 0.000 0.000 3798.317 4134.284 ␣
→˓ Diatomite 0.70 Clay 0.30
18.700 85.700 515.300 552.679 1733.298 ␣

→˓ 10.682 108.648 75.174 3604.761 3872.267 ␣
→˓ Coccolith_ooze 0.30 Diatomite 0.50 Mud 0.20
25.000 142.000 459.000 518.231 1715.612 ␣

→˓ 24.388 175.945 88.541 3543.441 3770.680 ␣
→˓ Coccolith_ooze 0.30 Diatomite 0.70
31.300 233.600 367.400 431.443 1727.755 ␣

→˓ 16.781 329.587 102.254 3536.973 3651.861 ␣
→˓ Sand 1.00
31.900 243.100 357.900 424.770 1719.132 ␣

→˓ 25.543 339.656 104.005 3544.482 3639.106 ␣
→˓ Coccolith_ooze 0.80 Diatomite 0.20
36.700 335.400 265.600 342.298 1675.058 ␣

→˓ 17.557 462.265 128.465 3467.220 3519.684 ␣
→˓ Chalk 1.00
40.800 382.600 218.400 291.817 1662.325 ␣

→˓ 13.524 534.247 133.268 3439.494 3423.104 ␣
→˓ Chalk 1.00
54.500 496.600 104.400 147.135 1649.440 ␣

→˓ 45.709 719.529 161.651 3103.703 2999.804 ␣
→˓ Chalk 0.50 Clay 0.50
55.300 516.300 84.700 114.840 1678.129 ␣

→˓ 5.054 756.096 162.953 3116.404 2970.460 ␣
→˓ Shale 1.00

The age, compacted_depth and lithology columns are the same as the bottom_age, bottom_depth and lithology columns
in the input drill site (except there is also a row associated with the surface age).

The compacted_thickness column is the total sediment thickness (601 metres - see base sediment layer of amended
drill site above) minus compacted_depth. The decompacted_thickness column is the thickness of all sediment at the
associated age. In other words, at each consecutive age another stratigraphic layer is essentially removed, allowing the
underlying layers to expand (due to their porosity). At present day (or the surface age) the decompacted thickness is
just the compacted thickness. The decompacted_density column is the average density integrated over the decompacted
thickness of the drill site (each stratigraphic layer contains a mixture of water and sediment according to its porosity
at the decompacted depth of the layer). The decompacted_sediment_rate column is the rate of sediment deposition in
units of metres/Ma. At each time it is calculated as the fully decompacted thickness (ie, using surface porosity only)
of the surface stratigraphic layer (whose deposition ends at the specified time) divided by the layer’s deposition time
interval. The decompacted_depth column is similar to decompacted_sediment_rate in that the stratigraphic layers are
fully decompacted (using surface porosity only) as if no portion of any layer had ever been buried. It is also similar
to compacted_depth except all effects of compaction have been removed. The dynamic_topography column is the
dynamic topography elevation relative to present day (or zero if no dynamic topography model was specified).

32 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Finally, tectonic_subsidence is the output of the underlying tectonic subsidence model, and water_depth is obtained
from tectonic subsidence by subtracting an isostatic correction of the decompacted sediment thickness.

Note: The output columns are specified using the -d command-line option (run python -m pybacktrack.
backtrack_cli --help to see all options), or using the decompacted_columns argument of the pybacktrack.
backtrack_and_write_well() function. By default, only age and decompacted_thickness are output.

2.4.4 Sea level variation

A model of the variation of sea level relative to present day can optionally be used when backtracking. This adjusts the
isostatic correction of the decompacted sediment thickness to take into account sea-level variations.

There are two built-in sea level models bundled inside backtrack:

• Haq87_SealevelCurve - The Phanerozoic Record of Global Sea-Level Change

• Haq87_SealevelCurve_Longterm - Normalised to start at zero at present-day.

A sea-level model is optional. If one is not specified then sea-level variation is assumed to be zero.

Note: A built-in sea-level model can be specified using the -slm command-line option (run python -m
pybacktrack.backtrack_cli --help to see all options), or using the sea_level_model argument of the
pybacktrack.backtrack_and_write_well() function.

Note: It is also possible to specify your own sea-level model. This can be done by providing your own text file con-
taining a column of ages (Ma) and a corresponding column of sea levels (m), and specifying the name of this file to the
-sl command-line option or to the sea_level_model argument of the pybacktrack.backtrack_and_write_well()
function.

2.4.5 Oceanic and continental tectonic subsidence

Tectonic subsidence is modelled separately for ocean basins and continental passive margins. The subsidence model
chosen by the backtrackmodule depends on whether the drill site is on oceanic or continental crust. This is determined
by an oceanic age grid. Since the age grid captures only oceanic crust, a drill site inside this region will automatically
use the oceanic subsidence model whereas a drill site outside this region uses the continental subsidence model.

The default present-day age grid bundled inside backtrack is a 6-minute resolution grid of the age of the world’s
ocean crust that uses the timescale of Gee and Kent (2007):

• Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N., Cannon, J., Whittaker, J., Matthews, K., McGirr,
R., (2020), A global dataset of present-day oceanic crustal age and seafloor spreading parameters, Geochemistry,
Geophysics, Geosystems, doi: 10.1029/2020GC009214

Note: The default present-day age grid was updated in pyBacktrack version 1.4.

Note: You can optionally specify your own age grid using the -a command-line option (run python -m
pybacktrack.backtrack_cli --help to see all options), or using the age_grid_filename argument of the
pybacktrack.backtrack_and_write_well() function.

2.4. Backtrack 33

https://doi.org/10.1126/science.1116412
https://doi.org/10.1016/B978-044452748-6.00097-3
https://doi.org/10.1029/2020GC009214


pyBacktrack Documentation, Release 1.5.0.dev8

Oceanic versus continental drill sites

ODP drill site 699 is located on deeper ocean crust (as opposed to shallower continental crust):

# SiteLongitude = -30.677
# SiteLatitude = -51.542
# SurfaceAge = 0

## bottom_age bottom_depth lithology
18.7 85.7 Diatomite 0.7 Clay 0.3
25.0 142.0 Coccolith_ooze 0.3 Diatomite 0.5 Mud 0.2
31.3 233.6 Coccolith_ooze 0.3 Diatomite 0.7
31.9 243.1 Sand 1
36.7 335.4 Coccolith_ooze 0.8 Diatomite 0.2
40.8 382.6 Chalk 1
54.5 496.6 Chalk 1
55.3 516.3 Chalk 0.5 Clay 0.5

So it will use the oceanic subsidence model.

See also:

Oceanic subsidence

In contrast, DSDP drill site 327 is located on shallower continental crust (as opposed to deeper ocean crust):

# SiteLongitude = -46.7837
# SiteLatitude = -50.8713
# RiftStartAge = 160
# RiftEndAge = 120
# SurfaceAge = 0

## bottom_age bottom_depth lithology
1.5 10.0 Shaley_sand 1
55.8 30.0 Clay 1
59.9 68.0 Diatomite 0.7 Clay 0.3
62.2 90.0 Clay 1
77.4 142.0 Coccolith_ooze 0.7 Biogenic_sand 0.3
86.4 154.0 Clay 1
113.1 324.0 Coccolith_ooze 0.3 Clay 0.7
122.3 469.5 Clay 1

So it will use the continental subsidence model. Since continental subsidence involves rifting, it requires a rift start and
end time. These extra rift parameters can be specified at the top of the drill site file as RiftStartAge and RiftEndAge
attributes (see Continental subsidence).

See also:

Continental subsidence

If you are not sure whether your drill site lies on oceanic or continental crust then first prepare your drill site assuming
it’s on oceanic crust (since this does not need rift start and end ages). If an error message is generated when running
backtrack then you’ll need to determine the rift start and end age, then add these to your drill site file as RiftStartAge
and RiftEndAge attributes, and then run backtrack again.

Note: In pyBacktrack version 1.4 if the RiftStartAge and RiftEndAge attributes are not specified in your drill site
file then they are obtained implicitly from the builtin rift start/end time grids (see Continental subsidence), so an error

34 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

message is unlikely to be generated when your drill site file is on continental crust.

Present-day tectonic subsidence

The tectonic subsidence at present day is used in both the oceanic and continental subsidence models. Tectonic subsi-
dence is unloaded water depth, that is with sediment removed. So to obtain an accurate value, backtrack starts with
a bathymetry grid to obtain the present-day water depth (the depth of the sediment surface). Then an isostatic correc-
tion of the present-day sediment thickness (at the drill site) takes into account the removal of sediment to reveal the
present-day tectonic subsidence. The isostatic correction uses the average sediment density of the drill site stratigraphy.

The default present-day bathymetry grid bundled inside backtrack is a 6-minute resolution global grid of the land
topography and ocean bathymetry (although only the ocean bathymetry is actually needed):

• Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and
Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009

Note: You can optionally specify your own bathymetry grid using the -t command-line option (run python
-m pybacktrack.backtrack_cli --help to see all options), or using the topography_filename argument of the
pybacktrack.backtrack_and_write_well() function.

Note: If you specify your own bathymetry grid, ensure that its ocean water depths are negative. It is assumed that
elevations in the grid above/below sea level are positive/negative.

2.4.6 Oceanic subsidence

Oceanic subsidence is somewhat simpler and more accurately modelled than continental subsidence (due to no litho-
spheric stretching).

The age of oceanic crust at the drill site (sampled from the oceanic age grid) can be converted to tectonic subsidence
(depth with sediment removed) by using an age-to-depth model. There are three models built into backtrack:

• RHCW18 - Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere system

• CROSBY_2007 - Crosby, A.G., (2007). Aspects of the relationship between topography and gravity on the Earth
and Moon, PhD thesis, University of Cambridge

The Python source code that implements this age-depth relationship can be found here. And note that additional
background information on this model can be found in: Crosby, A.G. and McKenzie, D., 2009. An analysis of
young ocean depth, gravity and global residual topography.

• GDH1 - Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with lithospheric age

The default model is RHCW18.

Note: The default age-to-depth model was updated in pyBacktrack version 1.4. It is now RHCW18. Previously it was
GDH1.

Note: These oceanic subsidence models can be specified using the -m command-line option (run python -m
pybacktrack.backtrack_cli --help to see all options), or using the ocean_age_to_depth_model argument of

2.4. Backtrack 35

https://dx.doi.org/10.7289/V5C8276M
https://dx.doi.org/10.7289/V5C8276M
https://doi.org/10.1016/j.pepi.2020.106559
https://github.com/EarthByte/pyBacktrack/blob/8e21ec2b49be101e88d80e8ccb18fe736d68a277/pybacktrack/age_to_depth.py#L195-L264
https://doi.org/10.1111/j.1365-246X.2009.04224.x
https://doi.org/10.1111/j.1365-246X.2009.04224.x
https://doi.org/10.1038/359123a0


pyBacktrack Documentation, Release 1.5.0.dev8

the pybacktrack.backtrack_and_write_well() function.

Note: It is also possible to specify your own age-to-depth model. This can be done by providing your own text file
containing a column of ages and a corresponding column of depths, and specifying the name of this file along with
two integers representing the age and depth column indices to the -m command-line option. Or you can pass your
own function as the ocean_age_to_depth_model argument of the pybacktrack.backtrack_and_write_well()
function, where your function should accept a single age (Ma) argument and return the corresponding depth (m).

Since the drill site might be located on anomalously thick or thin ocean crust, a constant offset is added to the age-to-
depth model to ensure the model subsidence matches the actual subsidence at present day.

2.4.7 Continental subsidence

Continental subsidence is somewhat more complex and less accurately modelled than oceanic subsidence (due to litho-
spheric stretching).

The continental subsidence model has two components of rifting as described in PyBacktrack 1.0: A Tool for Re-
constructing Paleobathymetry on Oceanic and Continental Crust. The first contribution is initial subsidence due to
lithospheric thinning where low-density crust is thinned and hot asthenosphere rises underneath. In our model the
crust and lithospheric mantle are identically stretched (uniform extension). The second contribution is thermal sub-
sidence where the lithosphere thickens as it cools due to conductive heat loss. In our model thermal subsidence only
takes place once the stretching stage has ended. In this way, there is instantaneous stretching from a thermal perspective
(in the sense that, although stretching happens over a finite period of time, the model assumes no cooling during the
stretching stage).

Note: The tectonic subsidence at the start of rifting is zero. This is because it is assumed that rifting begins at sea
level, and begins with a sediment thickness of zero (since sediments are yet to be deposited on newly forming ocean
crust).

For drill sites on continental crust, the rift end time must be provided. However the rift start time is optional. If it is
not specified then it is assumed to be equal to the rift end time. In other words, lithospheric stretching is assumed to
happen immediately at the rift end time (as opposed to happening over a period of time). This is fine for stratigraphic
layers deposited after rifting has ended, since the subsidence will be the same regardless of whether a rift start time
was specified or not.

Note: The rift start and end times can be specified in the drill site file using the RiftStartAge and RiftEndAge at-
tributes. Or they can be specified directly on the backtrack command-line using the -rs and -re options respectively
(run python -m pybacktrack.backtrack_cli --help to see all options). Or using the rifting_period argument
of the pybacktrack.backtrack_and_write_well() function.

Note: If the rift end time (and optional start time) is not explicitly specified in the drill site file or explicitly on the
backtrack command-line (or explicitly via the pybacktrack.backtrack_and_write_well() function) then both
the rift start and end times are obtained implicitly from the builtin rift start/end time grids. If the well location is outside
valid regions of the rift start/end time grids then an error is generated and you must then explicitly provide the rift end
time (and optionally the rift start time). However currently the rift grids cover all submerged continental crust (ie,
where the total sediment thickness grid contains valid values but the age grid does not) and not just the areas that are
rifting - see rift gridding - so an error is unlikely to be generated.

36 Chapter 2. Contents

https://doi.org/10.1029/2017GC007313
https://doi.org/10.1029/2017GC007313


pyBacktrack Documentation, Release 1.5.0.dev8

If a rift start time is specified, then the stretching factor varies exponentially between the rift start and end times
(assuming a constant strain rate). The stretching factor at the rift start time is 1.0 (since the lithosphere has not yet
stretched). The stretching factor at the rift end time is estimated such that our model produces a subsidence matching
the actual subsidence at present day, while also thinning the crust to match the actual crustal thickness at present day.

Note: The crustal thickness at the end of rifting and at present day are assumed to be the same.

Warning: If the estimated rift stretching factor (at the rift end time) results in a tectonic subsidence inaccuracy
(at present day) of more than 100 metres, then a warning is emitted to standard error on the console. This
can happen if the actual present-day subsidence is quite deep and the stretching factor required to achieve this
subsidence would be unrealistically large and result in a pre-rift crustal thickness (equal to the stretching factor
multiplied by the actual present-day crustal thickness) that exceeds typical lithospheric thicknesses (125km). In
this case the stretching factor is clamped to avoid this but, as a result, the modeled subsidence is not as deep as the
actual subsidence.

The default present-day crustal thickness grid bundled inside backtrack is a 1-degree resolution grid of the thickness
of the crustal part of the lithosphere:

• Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth’s
Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013

Note: You can optionally specify your own crustal thickness grid using the -k command-line option (run python -m
pybacktrack.backtrack_cli --help to see all options), or using the crustal_thickness_filename argument of the
pybacktrack.backtrack_and_write_well() function.

2.4.8 Dynamic topography

The effects of dynamic topography can be included in the models of tectonic subsidence (both oceanic and continental).

A dynamic topography model is optional. If one is not specified then dynamic topography is assumed to be zero.

All dynamic topography models consist of a sequence of time-dependent global grids (where each grid is associated
with a past geological time). The grids are in the mantle reference frame (instead of the plate reference frame) and
hence the drill site location must be reconstructed (back in time) before sampling these grids. To enable this, a dynamic
topography model also includes an associated static-polygons file to assign a reconstruction plate ID to the drill site,
and associated rotation file(s) to reconstruct the drill site location.

Note: The dynamic topography grids are interpolated at times not coinciding with the grid times. The method of
interpolation changed in pyBacktrack version 1.4 (as described in the notes of pybacktrack.DynamicTopography.
sample()) - however this change has no effect at the grid times (only between grid times).

Warning: If the drill site is reconstructed to a time that is older than supported by the dynamic topography model
then the oldest dynamic topography grid is used. Also note that the drill site can be reconstructed to a time that is
older than the age of the crust it is located on if the bottom age in the drill site file is older than the basement age.

Dynamic topography is included in the oceanic subsidence model by adjusting the subsidence to account for the change
in dynamic topography at the drill site since present day.

2.4. Backtrack 37

http://igppweb.ucsd.edu/~gabi/crust1.html#download
http://igppweb.ucsd.edu/~gabi/crust1.html#download


pyBacktrack Documentation, Release 1.5.0.dev8

See also:

Oceanic subsidence

Dynamic topography is included in the continental subsidence model by first removing the effects of dynamic topogra-
phy (between the start of rifting and present day) prior to estimating the rift stretching factor. This is because estimation
of the stretching factor only considers subsidence due to lithospheric thinning (stretching) and subsequent thickening
(thermal cooling). Once the optimal stretching factor has been estimated, the continental subsidence is adjusted to
account for the change in dynamic topography since the start of rifting.

See also:

Continental subsidence

These are the built-in dynamic topography models bundled inside backtrack:

• Young et al., 2022 - Long-term Phanerozoic sea level change from solid Earth processes

– gld428

• Braz et al., 2021 - Modelling the role of dynamic topography and eustasy in the evolution of the Great Artesian
Basin

– D10_gmcm9

• Cao et al., 2019 - The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic

– AY18

– KM16

• Müller et al., 2017 - Dynamic topography of passive continental margins and their hinterlands since the Creta-
ceous

– M1

– M2

– M3

– M4

– M5

– M6

– M7

• Rubey et al., 2017 - Global patterns of Earth’s dynamic topography since the Jurassic

– terra

• Müller et al., 2008 - Long-term sea-level fluctuations driven by ocean basin dynamics

– ngrand

– s20rts

– smean

Note: The above model links reference dynamic topography models that can be visualized in the GPlates Web Portal.

The M1 model is a combined forward/reverse geodynamic model, while models M2-M7 are forward models. Models
ngrand, s20rts and smean are backward-advection models. The backward-advection models are generally good for
the recent geological past (up to last 70 million years). While the M1-M7 models are most useful when it is necessary to
look at times older than 70 Ma because their oceanic paleo-depths lack the regional detail at more recent times that the

38 Chapter 2. Contents

https://doi.org/10.1016/j.epsl.2022.117451
http://portal.gplates.org/dynamic_topography_cesium/?model=gld428&name=Gld428_250-0Ma
https://doi.org/10.1111/bre.12606
https://doi.org/10.1111/bre.12606
http://portal.gplates.org/dynamic_topography_cesium/?model=gmcm9&name=D10_gmcm9
https://doi.org/10.1016/j.tecto.2019.04.018
http://portal.gplates.org/dynamic_topography_cesium/?model=gld324&name=AY18
http://portal.gplates.org/dynamic_topography_cesium/?model=gld321&name=KM16
https://doi.org/10.1016/j.gr.2017.04.028
https://doi.org/10.1016/j.gr.2017.04.028
http://portal.gplates.org/dynamic_topography_cesium/?model=M1&name=M1
http://portal.gplates.org/dynamic_topography_cesium/?model=M2&name=M2
http://portal.gplates.org/dynamic_topography_cesium/?model=M3&name=M3
http://portal.gplates.org/dynamic_topography_cesium/?model=M4&name=M4
http://portal.gplates.org/dynamic_topography_cesium/?model=M5&name=M5
http://portal.gplates.org/dynamic_topography_cesium/?model=M6&name=M6
http://portal.gplates.org/dynamic_topography_cesium/?model=M7&name=M7
https://doi.org/10.5194/se-2017-26
http://portal.gplates.org/dynamic_topography_cesium/?model=terra&name=Terra
https://doi.org/10.1126/science.1151540
http://portal.gplates.org/dynamic_topography_cesium/?model=ngrand&name=dynto_ngrand
http://portal.gplates.org/dynamic_topography_cesium/?model=s20rts&name=dynto_s20rts
http://portal.gplates.org/dynamic_topography_cesium/?model=smean&name=dynto_smean
http://portal.gplates.org


pyBacktrack Documentation, Release 1.5.0.dev8

backward-advection models capture (because of their assimilation of seismic tomography). M1 also assimilates seismic
tomography but suffers from other shortcomings.

Note: A built-in dynamic topography model can be specified using the -ym command-line option (run python -m
pybacktrack.backtrack_cli --help to see all options), or using the dynamic_topography_model argument of
the pybacktrack.backtrack_and_write_well() function.

Note: It is also possible to specify your own dynamic topography model. This can be done by providing your own
grid list text file with the first column containing a list of the dynamic topography grid filenames (where each filename
should be relative to the directory on the list file) and the second column containing the associated grid times (in Ma).
You’ll also need the associated static-polygons file, and one or more associated rotation files. The grid list filename,
static-polygons filename and one or more rotation filenames are then specified using the -y command-line option
(run python -m pybacktrack.backtrack_cli --help to see all options), or to the dynamic_topography_model
argument of the pybacktrack.backtrack_and_write_well() function.

2.4.9 Geohistory analysis

The Decompacting Stratigraphic Layers notebook shows how to visualize the decompaction of stratigraphic layers at a
drill site.

Note: The example notebooks are installed as part of the example data which can be installed by following these
instructions.

Continental subsidence

One of the examples in that notebook demonstrates decompaction of a shallow continental drill site using backtracking.
The tectonic subsidence (black dashed line) is from our model of continental subsidence and the paleo water depths (blue
fill) are backtracked using tectonic subsidence and sediment decompaction. Note that, unlike backstripping, dynamic
topography does affect tectonic subsidence (because its effects are included in the model of tectonic subsidence).

Note: There is a base sediment layer below the drill site (from the bottom of drill site to basement depth) since the
drill site does not reach basement depth. And for this drill site the base sediment layer is quite thick because the default
total sediment thickness grid is not as accurate near continental margins (compared to deeper ocean basins).

Oceanic subsidence

Another example in that notebook demonstrates decompaction of an oceanic drill site using backtracking. The tectonic
subsidence (black dashed line) is from our model of oceanic subsidence and the paleo water depths (blue fill) are back-
tracked using tectonic subsidence and sediment decompaction. Note that, unlike backstripping, dynamic topography
does affect tectonic subsidence (because its effects are included in the model of tectonic subsidence).

Note: There is a base sediment layer below the drill site (from the bottom of drill site to basement depth) since the
drill site does not reach basement depth.

2.4. Backtrack 39

https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb


pyBacktrack Documentation, Release 1.5.0.dev8

40 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

2.4. Backtrack 41



pyBacktrack Documentation, Release 1.5.0.dev8

2.5 Backstrip

• Overview

• Running backstrip

– Example

• Backstrip output

– Amended drill site output

– Decompacted output

• Sea level variation

• Geohistory analysis

2.5.1 Overview

The backstrip module is used to find tectonic subsidence from paleo water depths, and sediment decompaction over
time.

2.5.2 Running backstrip

You can either run backstrip as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.backstrip_cli ...

. . . or import pybacktrack into your own script, calling its functions and specifying parameters as function argu-
ments (...):

import pybacktrack

pybacktrack.backstrip_and_write_well(...)

Note: You can run python -m pybacktrack.backstrip_cli --help to see a description of all command-line
options available, or see the backstripping reference section for documentation on the function parameters.

Example

To backstrip the sunrise drill site (located on shallower continental crust), and output all available parameters (via the
-d option), we can run it from the command-line as:

python -m pybacktrack.backstrip_cli \
-w pybacktrack_examples/example_data/sunrise_lithology.txt \
-l primary extended \
-d age compacted_depth compacted_thickness decompacted_thickness decompacted_density␣

→˓decompacted_sediment_rate decompacted_depth min_tectonic_subsidence max_tectonic_
→˓subsidence average_tectonic_subsidence min_water_depth max_water_depth average_water_

(continues on next page)

42 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓depth lithology \
-slm Haq87_SealevelCurve_Longterm \
-o sunrise_backstrip_amended.txt \
-- \
sunrise_backstrip_decompacted.txt

. . . or write some Python code to do the same thing:

import pybacktrack

# Input and output filenames.
input_well_filename = 'pybacktrack_examples/example_data/sunrise_lithology.txt'
amended_well_output_filename = 'sunrise_backstrip_amended.txt'
decompacted_output_filename = 'sunrise_backstrip_decompacted.txt'

# Read input well file, and write amended well and decompacted results to output files.
pybacktrack.backstrip_and_write_well(

decompacted_output_filename,
input_well_filename,
lithology_filenames=[pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME,

pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME],
sea_level_model=pybacktrack.BUNDLE_SEA_LEVEL_MODELS['Haq87_SealevelCurve_Longterm'],
decompacted_columns=[pybacktrack.BACKSTRIP_COLUMN_AGE,

pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH,
pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS,
pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS,
pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY,
pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE,
pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH,
pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE,
pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE,
pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE,
pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH,
pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH,
pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH,
pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY],

# Might be an extra stratigraphic well layer added from well bottom to ocean␣
→˓basement...

ammended_well_output_filename=amended_well_output_filename)

Note: The drill site file pybacktrack_examples/example_data/sunrise_lithology.txt is part of the example
data.

2.5. Backstrip 43



pyBacktrack Documentation, Release 1.5.0.dev8

2.5.3 Backstrip output

For each stratigraphic layer in the input drill site file, backstrip can write one or more parameters to an output file.

Running the above example on the sunrise drill site:

# SiteLatitude = -9.5901
# SiteLongitude = 128.1538
# SurfaceAge = 0.0000
#
## bottom_age bottom_depth min_water_depth max_water_depth lithology

2.000 462.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

10.000 525.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

24.000 822.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.80 Sand 0.10

30.000 1062.000 0.000 100.000 Shale 0.30 ␣
→˓Limestone 0.55 Dolostone 0.05 Sand 0.10

34.000 1086.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.10 Sand 0.70

45.000 1366.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.75 Dolostone 0.05 Sand 0.10

58.000 1442.000 0.000 100.000 Shale 0.15 ␣
→˓Limestone 0.15 Sand 0.70

68.000 1494.000 50.000 200.000 Shale 0.45 ␣
→˓Limestone 0.50 Sand 0.05

83.000 1521.000 20.000 200.000 Shale 0.30 ␣
→˓Limestone 0.65 Sand 0.05

86.000 1545.000 20.000 200.000 Shale 0.55 ␣
→˓Limestone 0.35 Sand 0.10

88.000 1582.000 20.000 200.000 Shale 0.35 ␣
→˓Limestone 0.65

90.000 1620.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

95.000 1890.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

100.000 2036.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

107.000 2062.000 20.000 200.000 Shale 0.64 ␣
→˓Limestone 0.18 Sand 0.18

125.000 2066.000 0.000 100.000 Shale 0.40 ␣
→˓Chalk 0.10 Sand 0.50

160.000 2068.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

165.000 2130.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

170.000 2176.000 0.000 100.000 Shale 0.50 ␣
→˓Sand 0.50

177.000 2187.000 -10.000 25.000 Shale 0.30 ␣
→˓Sand 0.70

180.000 2237.000 -10.000 25.000 Shale 0.30 ␣
→˓Sand 0.70

190.000 2311.000 -10.000 20.000 Shale 0.30 ␣
(continues on next page)

44 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓Sand 0.70

. . . produces an amended drill site output file, and a decompacted output file containing the decompacted output param-
eters like sediment thickness and tectonic subsidence.

Amended drill site output

The amended drill site output file:

# SiteLatitude = -9.5901
# SiteLongitude = 128.1538
# SurfaceAge = 0.0000
#
## bottom_age bottom_depth min_water_depth max_water_depth lithology

2.000 462.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

10.000 525.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.75 Dolostone 0.05

24.000 822.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.80 Sand 0.10

30.000 1062.000 0.000 100.000 Shale 0.30 ␣
→˓Limestone 0.55 Dolostone 0.05 Sand 0.10

34.000 1086.000 0.000 100.000 Shale 0.20 ␣
→˓Limestone 0.10 Sand 0.70

45.000 1366.000 0.000 100.000 Shale 0.10 ␣
→˓Limestone 0.75 Dolostone 0.05 Sand 0.10

58.000 1442.000 0.000 100.000 Shale 0.15 ␣
→˓Limestone 0.15 Sand 0.70

68.000 1494.000 50.000 200.000 Shale 0.45 ␣
→˓Limestone 0.50 Sand 0.05

83.000 1521.000 20.000 200.000 Shale 0.30 ␣
→˓Limestone 0.65 Sand 0.05

86.000 1545.000 20.000 200.000 Shale 0.55 ␣
→˓Limestone 0.35 Sand 0.10

88.000 1582.000 20.000 200.000 Shale 0.35 ␣
→˓Limestone 0.65

90.000 1620.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

95.000 1890.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

100.000 2036.000 20.000 200.000 Shale 0.70 ␣
→˓Limestone 0.15 Sand 0.15

107.000 2062.000 20.000 200.000 Shale 0.64 ␣
→˓Limestone 0.18 Sand 0.18

125.000 2066.000 0.000 100.000 Shale 0.40 ␣
→˓Chalk 0.10 Sand 0.50

160.000 2068.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

165.000 2130.000 0.000 100.000 Shale 0.40 ␣
→˓Limestone 0.30 Sand 0.30

170.000 2176.000 0.000 100.000 Shale 0.50 ␣
(continues on next page)

2.5. Backstrip 45



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓Sand 0.50
177.000 2187.000 -10.000 25.000 Shale 0.30 ␣

→˓Sand 0.70
180.000 2237.000 -10.000 25.000 Shale 0.30 ␣

→˓Sand 0.70
190.000 2311.000 -10.000 20.000 Shale 0.30 ␣

→˓Sand 0.70

Note: No extra base sediment layer is added from the bottom of the drill site (2311 metres) to the total sediment
thickness at the drill site (1298.15 metres), because the former (bottom of drill site) is already deeper than the latter
(total sediment thickness). This happens because the default total sediment thickness grid is not as accurate near
continental margins (compared to deeper ocean basins).

Decompacted output

The decompacted output file:

# SiteLatitude = -9.5901
# SiteLongitude = 128.1538
# SurfaceAge = 0.0000
#
# age compacted_depth compacted_thickness decompacted_thickness decompacted_
→˓density decompacted_sediment_rate decompacted_depth min_tectonic_subsidence max_
→˓tectonic_subsidence average_tectonic_subsidence min_water_depth max_water_depth␣
→˓average_water_depth lithology
0.000 0.000 2311.000 2311.000 2089.479 ␣

→˓ 245.712 0.000 1236.930 1336.930 ␣
→˓ 1286.930 0.000 100.000 50.000 ␣
→˓Shale 0.20 Limestone 0.75 Dolostone 0.05
2.000 462.000 1849.000 1984.750 2057.304 ␣

→˓ 8.922 491.425 1038.610 1138.610 ␣
→˓ 1088.610 0.000 100.000 50.000 ␣
→˓Shale 0.20 Limestone 0.75 Dolostone 0.05
10.000 525.000 1786.000 1936.640 2052.112 ␣

→˓ 24.613 562.801 956.290 1056.290 ␣
→˓ 1006.290 0.000 100.000 50.000 ␣
→˓Shale 0.10 Limestone 0.80 Sand 0.10
24.000 822.000 1489.000 1703.149 2018.885 ␣

→˓ 50.826 907.389 846.332 946.332 ␣
→˓ 896.332 0.000 100.000 50.000 ␣
→˓Shale 0.30 Limestone 0.55 Dolostone 0.05 Sand ␣
→˓ 0.10
30.000 1062.000 1249.000 1493.707 1994.320 ␣

→˓ 7.743 1212.348 678.295 778.295 ␣
→˓ 728.295 0.000 100.000 50.000 ␣
→˓Shale 0.20 Limestone 0.10 Sand 0.70
34.000 1086.000 1225.000 1472.172 1991.762 ␣

→˓ 32.462 1243.321 653.467 753.467 ␣
→˓ 703.467 0.000 100.000 50.000 ␣

(continues on next page)

46 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓Shale 0.10 Limestone 0.75 Dolostone 0.05 Sand ␣
→˓ 0.10
45.000 1366.000 945.000 1223.986 1937.093 ␣

→˓ 7.857 1600.399 515.129 615.129 ␣
→˓ 565.129 0.000 100.000 50.000 ␣
→˓Shale 0.15 Limestone 0.15 Sand 0.70
58.000 1442.000 869.000 1153.349 1921.307 ␣

→˓ 7.583 1702.542 546.589 696.589 ␣
→˓ 621.589 50.000 200.000 125.000 ␣
→˓Shale 0.45 Limestone 0.50 Sand 0.05
68.000 1494.000 817.000 1100.849 1911.363 ␣

→˓ 2.517 1778.370 443.659 623.659 ␣
→˓ 533.659 20.000 200.000 110.000 ␣
→˓Shale 0.30 Limestone 0.65 Sand 0.05
83.000 1521.000 790.000 1074.658 1904.627 ␣

→˓ 12.270 1816.128 439.905 619.905 ␣
→˓ 529.905 20.000 200.000 110.000 ␣
→˓Shale 0.55 Limestone 0.35 Sand 0.10
86.000 1545.000 766.000 1049.084 1900.276 ␣

→˓ 26.459 1852.938 423.355 603.355 ␣
→˓ 513.355 20.000 200.000 110.000 ␣
→˓Shale 0.35 Limestone 0.65
88.000 1582.000 729.000 1012.260 1890.539 ␣

→˓ 31.590 1905.856 388.195 568.195 ␣
→˓ 478.195 20.000 200.000 110.000 ␣
→˓Shale 0.70 Limestone 0.15 Sand 0.15
90.000 1620.000 691.000 968.032 1884.877 ␣

→˓ 92.186 1969.037 343.109 523.109 ␣
→˓ 433.109 20.000 200.000 110.000 ␣
→˓Shale 0.70 Limestone 0.15 Sand 0.15
95.000 1890.000 421.000 625.158 1845.618 ␣

→˓ 51.506 2429.968 160.243 340.243 ␣
→˓ 250.243 20.000 200.000 110.000 ␣
→˓Shale 0.70 Limestone 0.15 Sand 0.15
100.000 2036.000 275.000 412.490 1835.863 ␣

→˓ 6.452 2687.497 111.343 291.343 ␣
→˓ 201.343 20.000 200.000 110.000 ␣
→˓Shale 0.64 Limestone 0.18 Sand 0.18
107.000 2062.000 249.000 373.048 1835.892 ␣

→˓ 0.375 2732.658 109.605 209.605 ␣
→˓ 159.605 0.000 100.000 50.000 ␣
→˓Shale 0.40 Chalk 0.10 Sand 0.50
125.000 2066.000 245.000 367.097 1835.856 ␣

→˓ 0.090 2739.405 145.550 245.550 ␣
→˓ 195.550 0.000 100.000 50.000 ␣
→˓Shale 0.40 Limestone 0.30 Sand 0.30
160.000 2068.000 243.000 364.308 1835.425 ␣

→˓ 19.655 2742.563 198.479 298.479 ␣
→˓ 248.479 0.000 100.000 50.000 ␣
→˓Shale 0.40 Limestone 0.30 Sand 0.30
165.000 2130.000 181.000 276.308 1821.056 ␣

→˓ 15.434 2840.839 117.435 217.435 ␣

(continues on next page)

2.5. Backstrip 47



pyBacktrack Documentation, Release 1.5.0.dev8

(continued from previous page)

→˓ 167.435 0.000 100.000 50.000 ␣
→˓Shale 0.50 Sand 0.50
170.000 2176.000 135.000 205.283 1822.654 ␣

→˓ 2.458 2918.011 116.777 151.777 ␣
→˓ 134.277 -10.000 25.000 7.500 ␣
→˓Shale 0.30 Sand 0.70
177.000 2187.000 124.000 189.178 1820.541 ␣

→˓ 26.161 2935.218 133.251 168.251 ␣
→˓ 150.751 -10.000 25.000 7.500 ␣
→˓Shale 0.30 Sand 0.70
180.000 2237.000 74.000 114.644 1810.669 ␣

→˓ 11.696 3013.701 74.454 104.454 ␣
→˓ 89.454 -10.000 20.000 5.000 ␣
→˓Shale 0.30 Sand 0.70
190.000 2311.000 0.000 0.000 0.000 ␣

→˓ 0.000 3130.665 -10.000 20.000 ␣
→˓ 5.000 -10.000 20.000 5.000 ␣
→˓Shale 1.00

The age, compacted_depth, min_water_depth, max_water_depth and lithology columns are the same as the bottom_age,
bottom_depth, min_water_depth, max_water_depth and lithology columns in the input drill site (except there is also a
row associated with the surface age).

The compacted_thickness column is the bottom depth of the drill site (2311 metres - noting that there is no base
sediment layer in the amended drill site above) minus compacted_depth. The decompacted_thickness column is the
thickness of all sediment at the associated age. In other words, at each consecutive age another stratigraphic layer is
essentially removed, allowing the underlying layers to expand (due to their porosity). At present day (or the surface age)
the decompacted thickness is just the compacted thickness. And note that because no extra base sediment layer was
added to the bottom of the drill site (2311 metres) the thickness and density is zero there. The decompacted_density
column is the average density integrated over the decompacted thickness of the drill site (each stratigraphic layer con-
tains a mixture of water and sediment according to its porosity at the decompacted depth of the layer). The decom-
pacted_sediment_rate column is the rate of sediment deposition in units of metres/Ma. At each time it is calculated as
the fully decompacted thickness (ie, using surface porosity only) of the surface stratigraphic layer (whose deposition
ends at the specified time) divided by the layer’s deposition time interval. The decompacted_depth column is similar
to decompacted_sediment_rate in that the stratigraphic layers are fully decompacted (using surface porosity only) as
if no portion of any layer had ever been buried. It is also similar to compacted_depth except all effects of compaction
have been removed.

Finally, average_water_depth is just the average min_water_depth and max_water_depth. And
min_tectonic_subsidence, max_tectonic_subsidence and average_tectonic_subsidence are obtained from
min_water_depth and max_water_depth and average_water_depth by adding an isostatic correction of the de-
compacted sediment thickness (to obtain the deeper isostatically compensated, sediment-free water depth also known
as tectonic subsidence).

Note: The output columns are specified using the -d command-line option (run python -m pybacktrack.
backstrip_cli --help to see all options), or using the decompacted_columns argument of the pybacktrack.
backstrip_and_write_well() function. By default, only age and decompacted_thickness are output.

48 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

2.5.4 Sea level variation

A model of the variation of sea level relative to present day can optionally be used when backstripping. This adjusts
the isostatic correction of the decompacted sediment thickness to take into account sea-level variations.

There are two built-in sea level models bundled inside backstrip:

• Haq87_SealevelCurve - The Phanerozoic Record of Global Sea-Level Change

• Haq87_SealevelCurve_Longterm - Normalised to start at zero at present-day.

A sea-level model is optional. If one is not specified then sea-level variation is assumed to be zero.

Note: A built-in sea-level model can be specified using the -slm command-line option (run python -m
pybacktrack.backstrip_cli --help to see all options), or using the sea_level_model argument of the
pybacktrack.backstrip_and_write_well() function.

Note: It is also possible to specify your own sea-level model. This can be done by providing your own text file con-
taining a column of ages (Ma) and a corresponding column of sea levels (m), and specifying the name of this file to the
-sl command-line option or to the sea_level_model argument of the pybacktrack.backstrip_and_write_well()
function.

2.5.5 Geohistory analysis

The Decompacting Stratigraphic Layers notebook shows how to visualize the decompaction of stratigraphic layers at a
drill site.

Note: The example notebooks are installed as part of the example data which can be installed by following these
instructions.

One of the examples in that notebook demonstrates decompaction of a shallow continental drill site using backstripping.
The paleo water depths (blue fill) are recorded in the drill site file and the tectonic subsidence (black dashed line)
is backstripped using the paleo water depths and sediment decompaction. Note that, unlike backtracking, dynamic
topography does not affect tectonic subsidence (because backstripping does not have a model of tectonic subsidence).
So the image below is simply plotting dynamic topography alongside backstripped tectonic subsidence.

2.6 Paleobathymetry

• Overview

• Running paleobathymetry

– Example

• Paleobathymetry output

• Paleobathymetry gridding procedure

• Builtin rift gridding procedure

2.6. Paleobathymetry 49

https://doi.org/10.1126/science.1116412
https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/decompacting_stratigraphy.ipynb


pyBacktrack Documentation, Release 1.5.0.dev8

50 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

2.6.1 Overview

The paleo_bathymetry module is used to generate paleo bathymetry grids by reconstructing and backtracking
present-day sediment-covered crust through time.

2.6.2 Running paleobathymetry

You can either run paleo_bathymetry as a built-in script, specifying parameters as command-line options (...):

python -m pybacktrack.paleo_bathymetry_cli ...

. . . or import pybacktrack into your own script, calling its functions and specifying parameters as function argu-
ments (...):

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(...)

Note: You can run python -m pybacktrack.paleo_bathymetry_cli --help to see a description of all
command-line options available, or see the paleobathymetry reference section for documentation on the function pa-
rameters.

Example

To generate paleobathymetry NetCDF grids at 12 minute resolution from 0Ma to 240Ma in 1Myr increments, we can
run it from the command-line as:

python -m pybacktrack.paleo_bathymetry_cli \
-gm 12 \
-ym M7 \
-m GDH1 \
--use_all_cpus \
-- \
240 paleo_bathymetry_12m_M7_GDH1

. . .where the -gm option specifies the grid spacing (12 minutes), the -ym specifies the M7 dynamic topogra-
phy model, the -m option specifies the GDH1 oceanic subsidence model, the --use_all_cpus option uses all
CPUs (it also accepts an optional number of CPUs) and the generated paleobathymetry grid files are named
paleo_bathymetry_12m_M7_GDH1_<time>.nc.

. . . or write some Python code to do the same thing:

import pybacktrack

pybacktrack.reconstruct_paleo_bathymetry_grids(
'paleo_bathymetry_12m_M7_GDH1',
0.2, # degrees (same as 12 minutes)
240,
dynamic_topography_model='M7',
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_MODEL_GDH1,
use_all_cpus=True) # can also be an integer (the number of CPUs to use)

2.6. Paleobathymetry 51



pyBacktrack Documentation, Release 1.5.0.dev8

2.6.3 Paleobathymetry output

The following shows two of the 241 paleobathymetry NetCDF grids generated by the example above. They’re both
visualised in GPlates, the first at present day and the second at 60 Ma.

Also the Paleobathymetry notebook has a similar example.

Note: The example notebooks are installed as part of the example data which can be installed by following these
instructions.

2.6.4 Paleobathymetry gridding procedure

Paleobathymetry gridding uses the builtin rift start/end age grids along with the existing subsidence models (continental
rifting and oceanic) and the sediment decompaction functionality in pyBacktrack to generate paleo bathymetry grids
(typically in 1 Myr intervals).

The paleo_bathymetry module has similar options to the backtrack module. Such as options for the present day
grids containing age, bathymetry, crustal thickness and sediment thickness. And options for the dynamic topography
and sea level models. And the defaults for those options are the same as the backtrack module (except for the
default lithology - see below). For example, the paleo_bathymetrymodule defaults to the same present-day ETOPO1
bathymetry grid.

However the paleo_bathymetrymodule differs from the backtrackmodule in that, instead of a single point location
for a drill site, a uniform grid of points containing sediment (inside valid regions of the total sediment thickness grid)
are backtracked to obtain gridded paleo water depths through time.

Note: Sediment grid points near trenches are excluded by default to avoid deep bathymetry areas near trenches appear-
ing in the reconstructed grids. Each trench has an exclusion distance on the subducting plate side (typically 60 kms)
and an exlusion distance on the overriding plate side (typically 0 kms). And these per-trench distances are all built into

52 Chapter 2. Contents

https://github.com/EarthByte/pyBacktrack/blob/master/pybacktrack/notebooks/paleobathymetry.ipynb


pyBacktrack Documentation, Release 1.5.0.dev8

pyBacktrack. Any sediment grid points within these per-trench distances are excluded. However this masking near
trenches can be removed by specifying --exclude_distances_to_trenches_kms 0 0 (for example, in the paleo
bathymetry example above).

As with regular backtracking, those sediment grid points lying inside the age grid (valid regions) use an oceanic sub-
sidence model and those outside use a continental rifting model. However, in lieu of explicitly providing the rift start
and end ages (as for a 1D drill site) each 2D grid point samples the builtin rift start/end age grids. Each grid point is
also assigned a plate ID (using static polygons) and reconstructed back through time.

Each grid point has a single lithology, with an initial compacted thickness sampled from the total sediment thickness
grid at present day that is progressively decompacted back through geological time.

Note: The single lithology defaults to Average_ocean_floor_sediment which is the average of the ocean floor
sediment. This differs from the base lithology of drill sites where the undrilled portions of drill sites are usually below
the Carbonate Compensation Depth (CCD) where shale dominates. Note that you can override the default lithology by
specifying the -b command-line option.

The decompaction progresses incrementally (eg, in 1 Myr intervals) assuming a constant (average) decompacted sed-
imentation rate over the entire sedimentation period calculated as the fully decompacted initial thickness (ie, using
surface porosity only) divided by the sedimentation period (from start of rifting for continental crust, and from crustal
age for oceanic crust, to present day). Loading each reconstructed point’s decompacted thicknesses onto its modelled
tectonic subsidence (oceanic or continental) back through time, along with the effects of dynamic topography and
sea level models, reveals its history of water depths. Finally, the reconstructed locations of all grid points and their
reconstructed bathymetries are combined, at each reconstruction time, to create a history of paleo bathymetry grids.

Note: The supplementary script pybacktrack/supplementary/merge_paleo_bathymetry_grids.py can pref-
erentially merge paleobathymetry grids produced by pybacktrack with externally produced paleobathymetry grids.
This script first adds a user-specified dynamic topography to the external grids and then inserts only at grid locations
not covered by the pybacktrack grids (eg, the external grids may contain paleobathymetry on subducted crust that

2.6. Paleobathymetry 53



pyBacktrack Documentation, Release 1.5.0.dev8

is not covered by the reconstructed present-day sediment-deposited crust generated by pybacktrack). This script can
be obtained by installing the supplementary scripts.

2.6.5 Builtin rift gridding procedure

PyBacktrack comes with two builtin grids containing rift start and end ages on submerged continental crust at 5 minute
resolution. This is used during paleobathymetry gridding to obtain the rift periods of gridded points on continental
crust. It is also used during regular backtracking to obtain the rift period of a drill site on continental crust (when it is
not specified in the drill site file or on the command-line).

The rift grids cover all submerged continental crust, not just those areas that have undergone rifting. Submerged
continental crust is where the total sediment thickness grid contains valid values but the age grid does not (ie, submerged
crust that is non oceanic).

The rift grids were generated with pybacktrack/supplementary/generate_rift_grids.py using the Müller
2019 deforming plate model:

• Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le
Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., and Gurnis, M. (2019), A global plate model including
lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, vol. 38,.

Note: The rift generation script pybacktrack/supplementary/generate_rift_grids.py can be obtained by
installing the supplementary scripts.

This paragraph gives a brief overview of rift gridding. . . First, grid points on continental crust that have undergone
extensional deformation (rifting) during their most recent deformation period have their rift start and end ages assigned
as the start and end of that most recent deformation period (for each grid point). Next, grid points on continental crust
that have undergone contractional deformation during their most recent deformation period have their rift periods set
to default values (currently 200 to 0 Ma) to model these complex areas with simple rifting (despite a rifting model
no longer strictly applying). So that covers the deforming grid points on continental crust. Next, the non-deforming
grid points on continental crust obtain their rift period from the nearest deforming grid points. This ensures that all
continental crust contains a rift period and hence can be used to generate paleobathymetry grids from all present day
continental crust. Finally, only those continental grid points that are submerged are stored in the final rift grids since
we only need to backtrack submerged crust.

This paragraph gives a more detailed explanation of how deformation in particular is used in pybacktrack/
supplementary/generate_rift_grids.py. . . The script allows one to specify a total sediment thickness grid and
an age grid (defaulting to those included with pyBacktrack). Grid points are uniformly generated in longitude/latitude
space on continental crust. Next pyGPlates is used to load the Müller 2019 topological plate model (containing rigid
plate polygons and deforming networks) and reconstruct these continental grid points on back through geological time.
Note that plate IDs do not need to be explicitly assigned in order to be able to reconstruct because recent functionality
in pyGPlates, known as reconstructing by topologies, essentially continually assigns plate IDs using the topological
plate polygons and deforming networks while each grid point is reconstructed back through time. This ensures the
path of each grid point is correctly reconstructed through deforming regions so that we can correctly determine when it
enters and exits a deforming region. During this reconstruction each grid point is queried (at 1Myr intervals) whether it
passes through a deforming network. The time at which a reconstructed grid point first encounters a deforming network
(going backward in time) becomes its potential rift end time. Following that point further back in time we find when
it first exits a deforming network (again going backward in time), which becomes its potential rift start time. We also
keep track of a crustal stretching factor through time for each grid point so we can distinguish between extensional and
contractional deformation.

54 Chapter 2. Contents

https://doi.org/10.1029/2018TC005462
https://doi.org/10.1029/2018TC005462


pyBacktrack Documentation, Release 1.5.0.dev8

2.7 Reference

This section documents the Python functions and classes that make up the public interface of the pybacktrack package.

• Backtracking

– Summary

– Detail

• Backstripping

– Summary

– Detail

• Paleobathymetry

– Summary

– Detail

• Creating lithologies

– Summary

– Detail

• Decompacting well sites

– Reading and writing well files

∗ Summary

∗ Detail

– Compacted well

∗ Summary

∗ Detail

– Decompacted well

∗ Summary

∗ Detail

• Converting oceanic age to depth

– Summary

– Detail

• Continental rifting

– Summary

– Detail

• Dynamic topography

– Summary

– Detail

• Average sea level variations

2.7. Reference 55



pyBacktrack Documentation, Release 1.5.0.dev8

– Summary

– Detail

• Converting stratigraphic depth to age

– Summary

– Detail

• Utilities

– Summary

– Detail

• Constants

– Bundle data

– Backtracking

– Backstripping

– Paleobathymetry

– Lithology

– Oceanic subsidence

The pybacktrack package has the __version__ attribute:

import pybacktrack

pybacktrack.__version__

2.7.1 Backtracking

Find decompacted total sediment thickness and water depth through time.

Summary

pybacktrack.backtrack_well() finds decompacted total sediment thickness and water depth for each age in a well.

pybacktrack.write_backtrack_well() writes decompacted parameters as columns in a text file.

pybacktrack.backtrack_and_write_well() both backtracks well and writes decompacted data.

Detail

56 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

pybacktrack.backtrack_well(well_filename, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME,
topography_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME, to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME,
dynamic_topography_model=None, sea_level_model=None,
base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME,
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL,
rifting_period=None, well_location=None, well_bottom_age_column=0,
well_bottom_depth_column=1, well_lithology_column=2)

Finds decompacted total sediment thickness and water depth for each age in a well.

Parameters

• well_filename (string) – Name of well text file.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• age_grid_filename (string, optional) – Age grid filename. Used to obtain age of
seafloor at well location. Can be explicitly set to None if well site is known to be on con-
tinental crust (and hence age grid should be ignored). Note that this is different than not
specifying a filename (since that will use the default bundled age grid).

• topography_filename (string, optional) – Topography filename. Used to obtain wa-
ter depth at well location.

• total_sediment_thickness_filename (string, optional) – Total sediment thick-
ness filename. Used to obtain total sediment thickness at well location. Can be explicitly
set to None if well site is known to be drilled to basement depth (and hence total sediment
thickness grid should be ignored). Note that this is different than not specifying a filename
(since that will use the default bundled total sediment thickness grid).

• crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at well location.

• dynamic_topography_model (string or tuple, optional) – Represents a time-
dependent dynamic topography raster grid (in mantle frame).

Can be either:

– A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16,
D10_gmcm9 and gld428.

– A tuple containing the three elements (dynamic topography list filename, static polygon
filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids
(and associated times). Each row in this list file should contain two columns. First col-
umn containing filename (relative to list file) of a dynamic topography grid at a particular
time. Second column containing associated time (in Ma). The second tuple element is the
filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to well location so it can be reconstructed. The third tuple
element is the filename of the rotation file associated with model. Only the rotation file
for static continents/oceans is needed (ie, deformation rotations not needed).

2.7. Reference 57



pyBacktrack Documentation, Release 1.5.0.dev8

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• base_lithology_name (string, optional) – Lithology name of the stratigraphic unit
at the base of the well (must be present in lithologies file). The stratigraphic units in the well
might not record the full depth of sedimentation. The base unit covers the remaining depth
from bottom of well to the total sediment thickness. Defaults to Shale.

• ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18,
pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.
AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when
converting ocean age to depth at well location (if on ocean floor - not used for continental
passive margin). It can be one of the enumerated values, or a callable function accepting a
single non-negative age parameter and returning depth (in metres).

• rifting_period (tuple, optional) – Optional time period of rifting (if on continen-
tal passive margin - not used for oceanic floor). If specified then should be a 2-tuple
(rift_start_age, rift_end_age) where rift_start_age can be None (in which case rifting is con-
sidered instantaneous from a stretching point-of-view, not thermal). If specified then over-
rides value in well file (and value from builtin rift start/end grids). If well is on continental
passive margin then at least rift end age should be specified either here or in well file, or well
location must be inside rifting region of builtin rift start/end grids, otherwise a ValueError
exception will be raised.

• well_location (tuple, optional) – Optional location of well. If not provided then is
extracted from the well_filename file. If specified then overrides value in well file. If
specified then must be a 2-tuple (longitude, latitude) in degrees.

• well_bottom_age_column (int, optional) – The column of well file containing bot-
tom age. Defaults to 0.

• well_bottom_depth_column (int, optional) – The column of well file containing bot-
tom depth. Defaults to 1.

• well_lithology_column (int, optional) – The column of well file containing lithol-
ogy(s). Defaults to 2.

Returns

• pybacktrack.Well – The well read from well_filename. It may also be amended with
a base stratigraphic unit from the bottom of the well to basement.

• list of pybacktrack.DecompactedWell – The decompacted wells associated with the well.
There is one decompacted well per age, in same order (and ages) as the well units (youngest
to oldest).

Raises

• ValueError – If lithology_column is not the largest column number (must be last col-
umn).

• ValueError – If well_location is not specified and the well location was not extracted
from the well file.

• ValueError – If well is on continental passive margin but rift end age was not specified by
user and was not extracted from well file, and well location was not inside rifting region of
builtin rift start/end grids.

58 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct which
column it should be read from.

The tectonic subsidence at each age (of decompacted wells) is added as a tectonic_subsidence attribute to each
decompacted well returned.

pybacktrack.write_backtrack_well(decompacted_wells, decompacted_wells_filename, well,
well_attributes=None, decompacted_columns=[0, 1])

write_backtrack_well( decompacted_wells, decompacted_wells_filename, well, well_attributes=None, de-
compacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS): Write decom-
pacted parameters as columns in a text file.

Parameters

• decompacted_wells (sequence of pybacktrack.DecompactedWell) – The decom-
pacted wells returned by pybacktrack.backtrack_well().

• decompacted_wells_filename (string) – Name of output text file.

• well (pybacktrack.Well) – The well to extract metadata from.

• well_attributes (dict, optional) – Optional attributes in pybacktrack.Well ob-
ject to write to well file metadata. If specified then must be a dictionary mapping each
attribute name to a metadata name. For example, {'longitude' : 'SiteLongitude',
'latitude' : 'SiteLatitude'}. will write well.longitude (if not None) to meta-
data ‘SiteLongitude’, etc. Not that the attributes must exist in well (but can be set to None).

• decompacted_columns (list of columns, optional) – The decompacted columns
(and their order) to output to decompacted_wells_filename.

Available columns are:

– pybacktrack.BACKTRACK_COLUMN_AGE

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

– pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

– pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

– pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

– pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

– pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

– pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

Raises

• ValueError – If an unrecognised value is encountered in decompacted_columns.

• ValueError – If pybacktrack.BACKTRACK_COLUMN_LITHOLOGY is specified in
decompacted_columns but is not the last column.

2.7. Reference 59



pyBacktrack Documentation, Release 1.5.0.dev8

pybacktrack.backtrack_and_write_well(decompacted_output_filename, well_filename, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME,
topogra-
phy_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME,
to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME,
dynamic_topography_model=None, sea_level_model=None,
base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME,
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL,
rifting_period=None, decom-
pacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS,
well_location=None, well_bottom_age_column=0,
well_bottom_depth_column=1, well_lithology_column=2,
ammended_well_output_filename=None)

Same as pybacktrack.backtrack_well() but also writes decompacted results to a text file.

Also optionally write amended well data (ie, including extra stratigraphic base unit from well bottom to ocean
basement) to ammended_well_output_filename if specified.

Parameters

• decompacted_output_filename (string) – Name of text file to write decompacted re-
sults to.

• well_filename (string) – Name of well text file.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• age_grid_filename (string, optional) – Age grid filename. Used to obtain age of
seafloor at well location. Can be explicitly set to None if well site is known to be on con-
tinental crust (and hence age grid should be ignored). Note that this is different than not
specifying a filename (since that will use the default bundled age grid).

• topography_filename (string, optional) – Topography filename. Used to obtain wa-
ter depth at well location.

• total_sediment_thickness_filename (string, optional) – Total sediment thick-
ness filename. Used to obtain total sediment thickness at well location. Can be explicitly
set to None if well site is known to be drilled to basement depth (and hence total sediment
thickness grid should be ignored). Note that this is different than not specifying a filename
(since that will use the default bundled total sediment thickness grid).

• crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at well location.

• dynamic_topography_model (string or tuple, optional) – Represents a time-
dependent dynamic topography raster grid. Currently only used for oceanic floor (ie, well
location inside age grid) it is not used if well is on continental crust (passive margin).

Can be either:

– A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16,
D10_gmcm9 and gld428.

– A tuple containing the three elements (dynamic topography list filename, static polygon
filename, rotation filenames).

60 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

The first tuple element is the filename of file containing list of dynamic topography grids
(and associated times). Each row in this list file should contain two columns. First col-
umn containing filename (relative to list file) of a dynamic topography grid at a particular
time. Second column containing associated time (in Ma). The second tuple element is the
filename of file containing static polygons associated with dynamic topography model.
This is used to assign plate ID to well location so it can be reconstructed. The third tuple
element is the filename of the rotation file associated with model. Only the rotation file
for static continents/oceans is needed (ie, deformation rotations not needed).

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• base_lithology_name (string, optional) – Lithology name of the stratigraphic unit
at the base of the well (must be present in lithologies file). The stratigraphic units in the well
might not record the full depth of sedimentation. The base unit covers the remaining depth
from bottom of well to the total sediment thickness. Defaults to Shale.

• ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18,
pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.
AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when
converting ocean age to depth at well location (if on ocean floor - not used for continental
passive margin). It can be one of the enumerated values, or a callable function accepting a
single non-negative age parameter and returning depth (in metres).

• rifting_period (tuple, optional) – Optional time period of rifting (if on continen-
tal passive margin - not used for oceanic floor). If specified then should be a 2-tuple
(rift_start_age, rift_end_age) where rift_start_age can be None (in which case rifting is con-
sidered instantaneous from a stretching point-of-view, not thermal). If specified then over-
rides value in well file (and value from builtin rift start/end grids). If well is on continental
passive margin then at least rift end age should be specified either here or in well file, or well
location must be inside rifting region of builtin rift start/end grids, otherwise a ValueError
exception will be raised.

• decompacted_columns (list of columns, optional) – The decompacted columns
(and their order) to output to decompacted_wells_filename.

Available columns are:

– pybacktrack.BACKTRACK_COLUMN_AGE

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

– pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

– pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

– pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

– pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

– pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

– pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

– pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

2.7. Reference 61



pyBacktrack Documentation, Release 1.5.0.dev8

• well_location (tuple, optional) – Optional location of well. If not provided then is
extracted from the well_filename file. If specified then overrides value in well file. If
specified then must be a 2-tuple (longitude, latitude) in degrees.

• well_bottom_age_column (int, optional) – The column of well file containing bot-
tom age. Defaults to 0.

• well_bottom_depth_column (int, optional) – The column of well file containing bot-
tom depth. Defaults to 1.

• well_lithology_column (int, optional) – The column of well file containing lithol-
ogy(s). Defaults to 2.

• ammended_well_output_filename (string, optional) – Amended well data file-
name. Useful if an extra stratigraphic base unit is added from well bottom to ocean basement.

Raises

• ValueError – If lithology_column is not the largest column number (must be last col-
umn).

• ValueError – If well_location is not specified and the well location was not extracted
from the well file.

• ValueError – If well is on continental passive margin but rift end age was not specified by
user and was not extracted from well file, and well location was not inside rifting region of
builtin rift start/end grids.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct which
column it should be read from.

2.7.2 Backstripping

Find decompacted total sediment thickness and tectonic subsidence through time.

Summary

pybacktrack.backstrip_well() finds decompacted total sediment thickness and tectonic subsidence for each age
in a well.

pybacktrack.write_backstrip_well() writes decompacted parameters as columns in a text file.

Detail

pybacktrack.backstrip_well(well_filename, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
sea_level_model=None,
base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME,
well_location=None, well_bottom_age_column=0,
well_bottom_depth_column=1, well_min_water_depth_column=2,
well_max_water_depth_column=3, well_lithology_column=4)

62 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Finds decompacted total sediment thickness and tectonic subsidence for each age in well.

Parameters

• well_filename (str) – Name of well text file.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• total_sediment_thickness_filename (str, optional) – Total sediment thickness
filename. Used to obtain total sediment thickness at well location. Can be explicitly set to
None if well site is known to be drilled to basement depth (and hence total sediment thickness
grid should be ignored). Note that this is different than not specifying a filename (since that
will use the default bundled total sediment thickness grid).

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• base_lithology_name (string, optional) – Lithology name of the stratigraphic unit
at the base of the well (must be present in lithologies file). The stratigraphic units in the well
might not record the full depth of sedimentation. The base unit covers the remaining depth
from bottom of well to the total sediment thickness. Defaults to Shale.

• well_location (tuple, optional) – Optional location of well. If not provided then is
extracted from the well_filename file. If specified then overrides value in well file. If
specified then must be a 2-tuple (longitude, latitude) in degrees.

• well_bottom_age_column (int, optional) – The column of well file containing bot-
tom age. Defaults to 0.

• well_bottom_depth_column (int, optional) – The column of well file containing bot-
tom depth. Defaults to 1.

• well_min_water_depth_column (int, optional) – The column of well file containing
minimum water depth. Defaults to 2.

• well_max_water_depth_column (int, optional) – The column of well file containing
maximum water depth. Defaults to 3.

• well_lithology_column (int, optional) – The column of well file containing lithol-
ogy(s). Defaults to 4.

Returns

• pybacktrack.Well – The well read from well_filename. It may also be amended with
a base stratigraphic unit from the bottom of the well to basement.

• list of pybacktrack.DecompactedWell – The decompacted wells associated with the well.
There is one decompacted well per age, in same order (and ages) as the well units (youngest
to oldest).

Raises

• ValueError – If well_lithology_column is not the largest column number (must be last
column).

• ValueError – If well_location is not specified and the well location was not extracted
from the well file.

2.7. Reference 63



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct which
column it should be read from.

The min/max paleo water depths at each age (of decompacted wells) are added as min_water_depth and
max_water_depth attributes to each decompacted well returned.

pybacktrack.write_backstrip_well(decompacted_wells, decompacted_wells_filename, well,
well_attributes=None, decompacted_columns=[0, 1])

write_backstrip_well( decompacted_wells, decompacted_wells_filename, well, well_attributes=None, de-
compacted_columns=pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS): Write decom-
pacted parameters as columns in a text file.

Parameters

• decompacted_wells (sequence of pybacktrack.DecompactedWell) – The decom-
pacted wells returned by pybacktrack.backstrip_well().

• decompacted_wells_filename (string) – Name of output text file.

• well (pybacktrack.Well) – The well to extract metadata from.

• well_attributes (dict, optional) – Optional attributes in pybacktrack.Well ob-
ject to write to well file metadata. If specified then must be a dictionary mapping each
attribute name to a metadata name. For example, {'longitude' : 'SiteLongitude',
'latitude' : 'SiteLatitude'}. will write well.longitude (if not None) to meta-
data ‘SiteLongitude’, etc. Not that the attributes must exist in well (but can be set to None).

• decompacted_columns (list of columns, optional) – The decompacted columns
(and their order) to output to decompacted_wells_filename.

Available columns are:

– pybacktrack.BACKSTRIP_COLUMN_AGE

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

– pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

– pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

Raises

• ValueError – If an unrecognised value is encountered in decompacted_columns.

64 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

• ValueError – If pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY is specified in
decompacted_columns but is not the last column.

pybacktrack.backstrip_and_write_well(decompacted_output_filename, well_filename, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
sea_level_model=None,
base_lithology_name=pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME,
decompacted_columns=DEFAULT_DECOMPACTED_COLUMNS,
well_location=None, well_bottom_age_column=0,
well_bottom_depth_column=1, well_min_water_depth_column=2,
well_max_water_depth_column=3, well_lithology_column=4,
ammended_well_output_filename=None)

Same as pybacktrack.backstrip_well() but also writes decompacted results to a text file.

Also optionally write amended well data (ie, including extra stratigraphic base unit from well bottom to ocean
basement) to ammended_well_output_filename if specified.

Parameters

• decompacted_output_filename (string) – Name of text file to write decompacted re-
sults to.

• well_filename (string) – Name of well text file.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• total_sediment_thickness_filename (string, optional) – Total sediment thick-
ness filename. Used to obtain total sediment thickness at well location.

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• base_lithology_name (string, optional) – Lithology name of the stratigraphic unit
at the base of the well (must be present in lithologies file). The stratigraphic units in the well
might not record the full depth of sedimentation. The base unit covers the remaining depth
from bottom of well to the total sediment thickness. Defaults to Shale.

• decompacted_columns (list of columns, optional) – The decompacted columns
(and their order) to output to decompacted_wells_filename.

Available columns are:

– pybacktrack.BACKSTRIP_COLUMN_AGE

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

– pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

– pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

2.7. Reference 65



pyBacktrack Documentation, Release 1.5.0.dev8

– pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

– pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

– pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

– pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

• well_location (tuple, optional) – Optional location of well. If not provided then is
extracted from the well_filename file. If specified then overrides value in well file. If
specified then must be a 2-tuple (longitude, latitude) in degrees.

• well_bottom_age_column (int, optional) – The column of well file containing bot-
tom age. Defaults to 0.

• well_bottom_depth_column (int, optional) – The column of well file containing bot-
tom depth. Defaults to 1.

• well_min_water_depth_column (int, optional) – The column of well file containing
minimum water depth. Defaults to 2.

• well_max_water_depth_column (int, optional) – The column of well file containing
maximum water depth. Defaults to 3.

• well_lithology_column (int, optional) – The column of well file containing lithol-
ogy(s). Defaults to 4.

• ammended_well_output_filename (string, optional) – Amended well data file-
name. Useful if an extra stratigraphic base unit is added from well bottom to ocean basement.

Raises

• ValueError – If well_lithology_column is not the largest column number (must be last
column).

• ValueError – If well_location is not specified and the well location was not extracted
from the well file.

Notes

Each attribute to read from well file (eg, bottom_age, bottom_depth, etc) has a column index to direct which
column it should be read from.

The min/max paleo water depths at each age (of decompacted wells) are added as min_water_depth and
max_water_depth attributes to each decompacted well returned.

2.7.3 Paleobathymetry

Generate paleo bathymetry grids through time.

66 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Summary

pybacktrack.generate_lon_lat_points() generates a global grid of points uniformly spaced in longitude and
latitude.

pybacktrack.reconstruct_paleo_bathymetry() reconstructs and backtracks sediment-covered crust through
time to get paleo bathymetry.

pybacktrack.write_paleo_bathymetry_grids() grid paleo bathymetry into NetCDF grids files.

pybacktrack.reconstruct_paleo_bathymetry_grids() generates a global grid of points, recon-
structs/backtracks their bathymetry and writes paleo bathymetry grids.

Detail

pybacktrack.generate_lon_lat_points(grid_spacing_degrees)
Generates a global grid of points uniformly spaced in longitude and latitude.

Parameters
grid_spacing_degrees (float) – Spacing between points (in degrees).

Return type
list of (longitude, latitude) tuples

Raises
ValueError – If grid_spacing_degrees is negative or zero.

Notes

Longitudes start at -180 (dateline) and latitudes start at -90. If 180 is an integer multiple of
grid_spacing_degrees then the final longitude is also on the dateline (+180).

New in version 1.4.

pybacktrack.reconstruct_paleo_bathymetry(input_points, oldest_time=None, time_increment=1, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME,
topogra-
phy_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME,
to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME,
rota-
tion_filenames=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES,
static_polygon_filename=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME,
dynamic_topography_model=None, sea_level_model=None,
lithol-
ogy_name=pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME,
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL,
exclude_distances_to_trenches_kms=None,
region_plate_ids=None, anchor_plate_id=0,
output_positive_bathymetry_below_sea_level=False,
use_all_cpus=False)

Reconstructs and backtracks sediment-covered crust through time to get paleo bathymetry.

Parameters

2.7. Reference 67



pyBacktrack Documentation, Release 1.5.0.dev8

• input_points (sequence of (longitude, latitude) tuples) – The point loca-
tions to sample bathymetry at present day. Note that any samples outside the masked region
of the total sediment thickness grid are ignored.

• oldest_time (float, optional) – The oldest time (in Ma) that output is generated back
to (from present day). Value must not be negative. If not specified then the oldest of oceanic
crustal ages (for those input points on oceanic crust) and rift start ages (for those input points
on continental crust) is used instead.

• time_increment (float) – The time increment (in My) that output is generated (from
present day back to oldest time). Value must be positive.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• age_grid_filename (string, optional) – Age grid filename. Used to obtain age of
oceanic crust at present day. Crust is oceanic at locations inside masked age grid region, and
continental outside.

• topography_filename (string, optional) – Topography filename. Used to obtain
bathymetry at present day.

• total_sediment_thickness_filename (string, optional) – Total sediment thick-
ness filename. Used to obtain total sediment thickness at present day.

• crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at present day.

• rotation_filenames (list of string, optional) – List of filenames containing ro-
tation features (to reconstruct sediment-deposited crust). If not specified then defaults to the
built-in global rotations associated with the topological model used to generate the built-in
rift start/end time grids.

• static_polygon_filename (string, optional) – Filename containing static polygon
features (to assign plate IDs to points on sediment-deposited crust). If not specified then
defaults to the built-in static polygons associated with the topological model used to generate
the built-in rift start/end time grids.

• dynamic_topography_model (string or tuple, optional) – Represents a time-
dependent dynamic topography raster grid (in mantle frame).

Can be either:

– A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16,
D10_gmcm9 and gld428.

– A tuple containing the three elements (dynamic topography list filename, static polygon
filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids
(and associated times). Each row in this list file should contain two columns. First column
containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma). The second tuple element is the file-
name of file containing static polygons associated with dynamic topography model. This
is used to assign plate ID to a location so it can be reconstructed. The third tuple element
is the filename of the rotation file associated with model. Only the rotation file for static
continents/oceans is needed (ie, deformation rotations not needed).

68 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• lithology_name (string, optional) – Lithology name of the all sediment (must be
present in lithologies file). The total sediment thickness at all sediment locations consists of
a single lithology. Defaults to Average_ocean_floor_sediment.

• ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18,
pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.
AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when
converting ocean age to depth at a location (if on ocean floor - not used for continental
passive margin). It can be one of the enumerated values, or a callable function accepting a
single non-negative age parameter and returning depth (in metres).

• exclude_distances_to_trenches_kms (2-tuple of float, optional) – The two
distances to present-day trenches (on subducting and overriding sides, in that order) to ex-
clude bathymetry grid points (in kms), or None to use built-in per-trench defaults. Default is
None.

• region_plate_ids (list of int, optional) – Plate IDs of one or more plates to re-
strict paleobathymetry reconstruction to. Defaults to global.

• anchor_plate_id (int, optional) – The anchor plate id used when reconstructing pa-
leobathymetry grid points. Defaults to zero.

• output_positive_bathymetry_below_sea_level (bool, optional) – Whether to
output positive bathymetry values below sea level (the same as backtracked water depths at
a drill site). However topography/bathymetry grids typically have negative values below sea
level (and positive above). So the default (False) matches typical topography/bathymetry
grids (ie, outputs negative bathymetry values below sea level).

• use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores). If a positive integer then
use that many CPUs (cores). Defaults to False (single CPU).

Returns
The reconstructed paleo bathymetry points from present day to the oldest time (see
oldest_time) in increments of time_increment. Each key in the returned dict is one of those
times and each value in the dict is a list of reconstructed paleo bathymetries represented as a
3-tuple containing reconstructed longitude, reconstructed latitude and paleo bathmetry.

Return type
dict mapping each time to a list of 3-tuple (longitude, latitude, bathymetry)

Raises
ValueError – If oldest_time is negative (if specified) or if time_increment is not positive.

Notes

The output paleo bathymetry values are negative below sea level by default. Note that this is the inverse of water
depth (which is positive below sea level).

Any input points outside the masked region of the total sediment thickness grid are ignored (since bathymetry
relies on sediment decompaction over time).

New in version 1.4.

Changed in version 1.5: oldest_time no longer needs to be specified (defaults to oldest of ocean crust ages and
continental rift start ages of input points).

2.7. Reference 69



pyBacktrack Documentation, Release 1.5.0.dev8

pybacktrack.write_paleo_bathymetry_grids(paleo_bathymetry, grid_spacing_degrees, output_file_prefix,
output_xyz=False, use_all_cpus=False)

Grid paleo bathymetry into a NetCDF grid for each time step.

Parameters

• paleo_bathymetry (dict) – A dict mapping each reconstructed time to a list of 3-tuple
(longitude, latitude, bathymetry) The reconstructed paleo bathymetry points over a sequence
of reconstructed times. Each key in the returned dict is one of those times and each value
in the dict is a list of reconstructed paleo bathymetries represented as a 3-tuple containing
reconstructed longitude, reconstructed latitude and paleo bathmetry.

• grid_spacing_degrees (float) – Lat/lon grid spacing (in degrees). Ideally this should
match the spacing of the input points used to generate the paleo bathymetries.

• output_file_prefix (string) – The prefix of the output paleo bathymetry grid filenames
over time, with “_<time>.nc” appended.

• output_xyz (bool, optional) – Whether to also create a GMT xyz file (with “.xyz” ex-
tension) for each output paleo bathymetry grid. Each row of each xyz file contains “longitude
latitude bathymetry”. Default is to only create grid files (no xyz).

• use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores). If a positive integer then
use that many CPUs (cores). Defaults to False (single CPU).

Notes

New in version 1.4.

pybacktrack.reconstruct_paleo_bathymetry_grids(output_file_prefix, grid_spacing_degrees,
oldest_time=None, time_increment=1, lithol-
ogy_filenames=[pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME],
age_grid_filename=pybacktrack.BUNDLE_AGE_GRID_FILENAME,
topogra-
phy_filename=pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME,
to-
tal_sediment_thickness_filename=pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME,
crustal_thickness_filename=pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME,
rota-
tion_filenames=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES,
static_polygon_filename=pybacktrack.bundle_data.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME,
dynamic_topography_model=None,
sea_level_model=None, lithol-
ogy_name=pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME,
ocean_age_to_depth_model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL,
exclude_distances_to_trenches_kms=None,
region_plate_ids=None, anchor_plate_id=0,
output_positive_bathymetry_below_sea_level=False,
output_xyz=False, use_all_cpus=False)

Same as pybacktrack.reconstruct_paleo_bathymetry() but also generates present day input points on a
lat/lon grid and outputs paleobathymetry as a NetCDF grid for each time step.

Parameters

• output_file_prefix (string) – The prefix of the output paleo bathymetry grid filenames
over time, with “_<time>.nc” appended.

70 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

• grid_spacing_degrees (float) – Spacing between lat/lon points (in degrees) to sample
bathymetry at present day. Note that any samples outside the masked region of the total
sediment thickness grid are ignored.

• oldest_time (float, optional) – The oldest time (in Ma) that output is generated back
to (from present day). Value must not be negative. If not specified then the oldest of oceanic
crustal ages (for those grid points on oceanic crust) and rift start ages (for those grid points
on continental crust) is used instead.

• time_increment (float) – The time increment (in My) that output is generated (from
present day back to oldest time). Value must be positive.

• lithology_filenames (list of string, optional) – One or more text files contain-
ing lithologies.

• age_grid_filename (string, optional) – Age grid filename. Used to obtain age of
oceanic crust at present day. Crust is oceanic at locations inside masked age grid region, and
continental outside.

• topography_filename (string, optional) – Topography filename. Used to obtain
bathymetry at present day.

• total_sediment_thickness_filename (string, optional) – Total sediment thick-
ness filename. Used to obtain total sediment thickness at present day.

• crustal_thickness_filename (string, optional) – Crustal thickness filename.
Used to obtain crustal thickness at present day.

• rotation_filenames (list of string, optional) – List of filenames containing ro-
tation features (to reconstruct sediment-deposited crust). If not specified then defaults to the
built-in global rotations associated with the topological model used to generate the built-in
rift start/end time grids.

• static_polygon_filename (string, optional) – Filename containing static polygon
features (to assign plate IDs to points on sediment-deposited crust). If not specified then
defaults to the built-in static polygons associated with the topological model used to generate
the built-in rift start/end time grids.

• dynamic_topography_model (string or tuple, optional) – Represents a time-
dependent dynamic topography raster grid (in mantle frame).

Can be either:

– A string containing the name of a bundled dynamic topography model.

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16,
D10_gmcm9 and gld428.

– A tuple containing the three elements (dynamic topography list filename, static polygon
filename, rotation filenames).

The first tuple element is the filename of file containing list of dynamic topography grids
(and associated times). Each row in this list file should contain two columns. First column
containing filename (relative to list file) of a dynamic topography grid at a particular time.
Second column containing associated time (in Ma). The second tuple element is the file-
name of file containing static polygons associated with dynamic topography model. This
is used to assign plate ID to a location so it can be reconstructed. The third tuple element
is the filename of the rotation file associated with model. Only the rotation file for static
continents/oceans is needed (ie, deformation rotations not needed).

2.7. Reference 71



pyBacktrack Documentation, Release 1.5.0.dev8

• sea_level_model (string, optional) – Used to obtain sea levels relative to present
day. Can be either the name of a bundled sea level model, or a sea level filename. Bundled
sea level models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

• lithology_name (string, optional) – Lithology name of the all sediment (must be
present in lithologies file). The total sediment thickness at all sediment locations consists of
a single lithology. Defaults to Average_ocean_floor_sediment.

• ocean_age_to_depth_model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18,
pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.
AGE_TO_DEPTH_MODEL_GDH1} or function, optional) – The model to use when
converting ocean age to depth at a location (if on ocean floor - not used for continental
passive margin). It can be one of the enumerated values, or a callable function accepting a
single non-negative age parameter and returning depth (in metres).

• exclude_distances_to_trenches_kms (2-tuple of float, optional) – The two
distances to present-day trenches (on subducting and overriding sides, in that order) to ex-
clude bathymetry grid points (in kms), or None to use built-in per-trench defaults. Default is
None.

• region_plate_ids (list of int, optional) – Plate IDs of one or more plates to re-
strict paleobathymetry reconstruction to. Defaults to global.

• anchor_plate_id (int, optional) – The anchor plate id used when reconstructing pa-
leobathymetry grid points. Defaults to zero.

• output_positive_bathymetry_below_sea_level (bool, optional) – Whether to
output positive bathymetry values below sea level (the same as backtracked water depths at
a drill site). However topography/bathymetry grids typically have negative values below sea
level (and positive above). So the default (False) matches typical topography/bathymetry
grids (ie, outputs negative bathymetry values below sea level).

• output_xyz (bool, optional) – Whether to also create a GMT xyz file (with “.xyz” ex-
tension) for each output paleo bathymetry grid. Each row of each xyz file contains “longitude
latitude bathymetry”. Default is to only create grid files (no xyz).

• use_all_cpus (bool or int, optional) – If False (or zero) then use a single CPU.
If True then distribute CPU processing across all CPUs (cores). If a positive integer then
use that many CPUs (cores). Defaults to False (single CPU).

Raises
ValueError – If oldest_time is negative (if specified) or if time_increment is not positive.

Notes

The output paleo bathymetry grids have negative values below sea level by default. Note that this is the inverse
of water depth (which is positive below sea level).

Any input points outside the masked region of the total sediment thickness grid are ignored (since bathymetry
relies on sediment decompaction over time).

New in version 1.4.

Changed in version 1.5: oldest_time no longer needs to be specified (defaults to oldest of ocean crust ages and
continental rift start ages of grid points).

72 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

2.7.4 Creating lithologies

Create lithologies or read them from file(s).

Summary

pybacktrack.Lithology is a class containing data for a lithology.

pybacktrack.read_lithologies_file() reads lithologies from a text file.

pybacktrack.read_lithologies_files() reads and merges lithologies from one or more text files.

pybacktrack.create_lithology() creates a lithology by looking up a name in a dictionary of lithologies.

pybacktrack.create_lithology_from_components() creates a lithology by combining multiple lithologies us-
ing different weights.

Detail

class pybacktrack.Lithology(density, surface_porosity, porosity_decay)
Class containing lithology data.

__init__(density, surface_porosity, porosity_decay)
Create a lithology from density, surface porosity and porosity decay.

Parameters

• density (float) – Density (in kg/m3).

• surface_porosity (float) – Surface porosity (unit-less).

• porosity_decay (float) – Porosity decay (in metres).

pybacktrack.read_lithologies_file(lithologies_filename)
Reads a text file with each row representing lithology parameters.

Parameters
lithologies_filename (str) – Filename of the lithologies text file.

Returns
Dictionary mapping lithology names to pybacktrack.Lithology objects.

Return type
dict

Notes

The four parameter columns in the lithologies text file should contain:

1. name

2. density

3. surface_porosity

4. porosity_decay

2.7. Reference 73



pyBacktrack Documentation, Release 1.5.0.dev8

pybacktrack.read_lithologies_files(lithologies_filenames)
Reads each lithologies text file in the sequence and merges their lithologies.

Parameters
lithologies_filenames (sequence of str) – Filenames of the lithologies text files.

Returns
Dictionary mapping lithology names to pybacktrack.Lithology objects.

Return type
dict

Notes

The four parameter columns in each lithologies text file should contain:

1. name

2. density

3. surface_porosity

4. porosity_decay

The order of filenames is important. If a lithology name exists in multiple files but has different definitions (values
for density, surface porosity and porosity decay) then the definition in the last file containing the lithology name
is used.

New in version 1.2.

pybacktrack.create_lithology(lithology_name, lithologies)
Looks up a lithology using a name.

Parameters

• lithology_name (str) – The name of the lithology to look up.

• lithologies (dict) – A dictionary mapping lithology names to pybacktrack.
Lithology objects.

Returns
The lithology matching lithology_name.

Return type
pybacktrack.Lithology

Raises
KeyError – If lithology_name is not found in lithologies.

pybacktrack.create_lithology_from_components(components, lithologies)
Creates a combined lithology (if necessary) from multiple weighted lithologies.

Parameters

• components (sequence of tuples) – A sequence (eg, list) of tuples (str, float) con-
taining a lithology name and its fraction of contribution.

• lithologies (dict) – A dictionary mapping lithology names to pybacktrack.
Lithology objects.

Returns
The combined lithology.

74 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Return type
pybacktrack.Lithology

Raises

• ValueError – If all fractions do not add up to 1.0.

• KeyError – If a lithology name is not found in lithologies.

2.7.5 Decompacting well sites

• Read/write well site files,

• query a well and its stratigraphic layers, and

• query decompacted sections at past times.

Reading and writing well files

Read/write well site files.

Summary

pybacktrack.read_well_file() reads a text file with each row representing a stratigraphic unit.

pybacktrack.write_well_file() writes a text file with each row representing a stratigraphic unit.

pybacktrack.write_well_metadata() writes well metadata to a text file.

Detail

pybacktrack.read_well_file(well_filename, lithologies, bottom_age_column=0, bottom_depth_column=1,
lithology_column=2, other_columns=None, well_attributes=None)

Reads a text file with each row representing a stratigraphic unit.

Parameters

• well_filename (str) – Name of well text file.

• lithologies (dict) – Dictionary mapping lithology names to pybacktrack.Lithology
objects.

• well_bottom_age_column (int, optional) – The column of well file containing bot-
tom age. Defaults to 0.

• well_bottom_depth_column (int, optional) – The column of well file containing bot-
tom depth. Defaults to 1.

• well_lithology_column (int, optional) – The column of well file containing lithol-
ogy(s). Defaults to 2.

• other_columns (dict, optional) – Dictionary of extra columns (besides age,
depth and lithology(s)). Each dict value should be a column index (to read from
file), and each associated dict key should be a string that will be the name of
an attribute (added to each pybacktrack.StratigraphicUnit object in the re-
turned pybacktrack.Well) containing the value read. For example, backstripping

2.7. Reference 75



pyBacktrack Documentation, Release 1.5.0.dev8

will add min_water_depth and max_water_depth attributes (when pybacktrack.
backstrip_well() or pybacktrack.backstrip_and_write_well() has been called,
which in turn calls this function).

• well_attributes (dict, optional) – Attributes to read from well file metadata and
store in returned pybacktrack.Well object. If specified then must be a dictionary mapping
each metadata name to a 2-tuple containing attribute name and a function to convert attribute
string to attribute value. For example, {‘SiteLongitude’ : (‘longitude’, float), ‘SiteLatitude’
: (‘latitude’, float)} will look for metadata name ‘SiteLongitude’ and store a float value in
Well.longitude (or None if not found), etc. Each metadata not found in well file will store
None in the associated attribute of pybacktrack.Well object.

Returns
Well read from file.

Return type
pybacktrack.Well

Raises
ValueError – If lithology_column is not the largest column number (must be last column).

Notes

Each attribute to read (eg, bottom_age, bottom_depth, etc) has a column index to direct which column it should
be read from.

If file contains SurfaceAge = <age> in commented (#) lines then the top age of the youngest stratigraphic unit
will have that age, otherwise it defaults to 0Ma (present day).

pybacktrack.write_well_file(well, well_filename, other_column_attribute_names=None,
well_attributes=None)

Writes a text file with each row representing a stratigraphic unit.

Parameters

• well (pybacktrack.Well) – The well to write.

• well_filename (str) – Name of well text file.

• other_column_attribute_names (sequence of str) – Names of any extra column
attributes to write as column before the lithology(s) column. For example, backstrip-
ping will add min_water_depth and max_water_depth attributes (when pybacktrack.
backstrip_well() or pybacktrack.backstrip_and_write_well() has been called,
which in turn calls this function).

• well_attributes (dict, optional) – Attributes in pybacktrack.Well object to write
to well file metadata. If specified then must be a dictionary mapping each attribute name to a
metadata name. For example, {‘longitude’ : ‘SiteLongitude’, ‘latitude’ : ‘SiteLatitude’} will
write well.longitude (if not None) to metadata ‘SiteLongitude’, etc. Not that the attributes
must exist in well (but can be set to None).

pybacktrack.write_well_metadata(well_file, well, well_attributes=None)
Writes well metadata to file object well_file.

Parameters

• well_file (file object) – Well file object to write to.

• well (pybacktrack.Well) – Well to extract metadata from.

76 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

• well_attributes (dict, optional) – Attributes in pybacktrack.Well object to write
to well file metadata. If specified then must be a dictionary mapping each attribute name to a
metadata name. For example, {‘longitude’ : ‘SiteLongitude’, ‘latitude’ : ‘SiteLatitude’} will
write well.longitude (if not None) to metadata ‘SiteLongitude’, etc. Not that the attributes
must exist in well (but can be set to None).

Compacted well

Query a well and its stratigraphic layers.

Summary

pybacktrack.Well is a class containing all stratigraphic units in a well.

pybacktrack.StratigraphicUnit is a class containing data for a stratigraphic unit.

Detail

class pybacktrack.Well(attributes=None, stratigraphic_units=None)
Class containing all the stratigraphic units in a well sorted by age (from youngest to oldest).

longitude

Longitude of the well location.

Note: This attribute is available provided pybacktrack.backtrack_well() or pybacktrack.
backstrip_well() (or any function calling them) have been called.

Type
float, optional

latitude

Latitude of the well location.

Note: This attribute is available provided pybacktrack.backtrack_well() or pybacktrack.
backstrip_well() (or any function calling them) have been called.

Type
float, optional

stratigraphic_units

List of stratigraphic units in this well sorted by age (from youngest to oldest).

Type
list of pybacktrack.StratigraphicUnit

__init__(attributes=None, stratigraphic_units=None)
Create a well from optional stratigraphic units.

Parameters

2.7. Reference 77



pyBacktrack Documentation, Release 1.5.0.dev8

• attributes (dict, optional) – Attributes to store on this well object. If specified then
must be a dictionary mapping attribute names to values.

• stratigraphic_units (sequence of pybacktrack.StratigraphicUnit, optional) –
Sequence of StratigraphicUnit objects. They can be unsorted (by age) but will be added in
sorted order.

Raises
ValueError – If:

#. Youngest unit does not have zero depth, or #. adjacent units do not have matching top and
bottom ages and depths.

. . . this ensures the units are contiguous in depth from the surface (ie, no gaps).

Notes

Stratigraphic units can also be added using pybacktrack.Well.add_compacted_unit()

add_compacted_unit(top_age, bottom_age, top_depth, bottom_depth, lithology_components, lithologies,
other_attributes=None)

Add the next deeper stratigraphic unit.

Units must be added in order of age.

Parameters

• top_age (float) – Age of top of stratigraphic unit (in Ma).

• bottom_age (float) – Age of bottom of stratigraphic unit (in Ma).

• top_depth (float) – Depth of top of stratigraphic unit (in metres).

• bottom_depth (float) – Depth of bottom of stratigraphic unit (in metres).

• lithology_components (sequence of tuples (str, float)) – Sequence of tu-
ples (name, fraction) containing a lithology name and its fraction of contribution.

• lithologies (dict) – A dictionary mapping lithology names to pybacktrack.
Lithology objects.

• other_attributes (dict, optional) – A dictionary of attribute name/value
pairs to set on stratigraphic unit object (using setattr). For example, back-
stripping will add the min_water_depth and max_water_depth attributes (when
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well()
has been called).

Raises
ValueError – If:

#. Youngest unit does not have zero depth, or #. adjacent units do not have matching top and
bottom ages and depths.

. . . this ensures the units are contiguous in depth from the surface (ie, no gaps).

decompact(age=None)
Finds decompacted total sediment thickness at ‘age’ (if specified), otherwise at each (top) age in all strati-
graphic units.

Returns
If ‘age’ is specified then returns the decompacted well at that age (or None if ‘age’ is not

78 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

younger than bottom age of well), otherwise a list of decompacted wells with one per age in
same order (and ages) as the well units (youngest to oldest).

Return type
pybacktrack.DecompactedWell, or list of pybacktrack.DecompactedWell

Notes

Changed in version 1.4: Added the ‘age’ parameter.

class pybacktrack.StratigraphicUnit(top_age, bottom_age, top_depth, bottom_depth,
lithology_components, lithologies, other_attributes=None)

Class to hold data for a stratigraphic unit.

top_age

Age of top of stratigraphic unit (in Ma).

Type
float

bottom_age

Age of bottom of stratigraphic unit (in Ma).

Type
float

top_depth

Depth of top of stratigraphic unit (in metres).

Type
float

bottom_depth

Depth of bottom of stratigraphic unit (in metres).

Type
float

decompacted_top_depth

Fully decompacted depth of top of stratigraphic unit (in metres) as if no portion of any layer had ever been
buried (ie, using surface porosities only).

Type
float

decompacted_bottom_depth

Fully decompacted depth of bottom of stratigraphic unit (in metres) as if no portion of any layer had ever
been buried (ie, using surface porosities only).

Type
float

min_water_depth

Minimum paleo-water depth of stratigraphic unit (in metres).

Note: This attribute is only available when backstripping (not backtracking). For example, it is available if
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called.

2.7. Reference 79



pyBacktrack Documentation, Release 1.5.0.dev8

Type
float, optional

max_water_depth

Maximum paleo-water depth of stratigraphic unit (in metres).

Note: This attribute is only available when backstripping (not backtracking). For example, it is available if
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called.

Type
float, optional

lithology_components

Sequence of tuples (name, fraction) containing a lithology name and its fraction of contribution.

Type
sequence of tuples (str, float)

__init__(top_age, bottom_age, top_depth, bottom_depth, lithology_components, lithologies,
other_attributes=None)

Create a stratigraphic unit from top and bottom age, top and bottom depth and lithology components.

Parameters

• top_age (float) – Age of top of stratigraphic unit (in Ma).

• bottom_age (float) – Age of bottom of stratigraphic unit (in Ma).

• top_depth (float) – Depth of top of stratigraphic unit (in metres).

• bottom_depth (float) – Depth of bottom of stratigraphic unit (in metres).

• lithology_components (sequence of tuples (str, float)) – Sequence of tu-
ples (name, fraction) containing a lithology name and its fraction of contribution.

• lithologies (dict) – A dictionary mapping lithology names to pybacktrack.
Lithology objects.

• other_attributes (dict, optional) – A dictionary of attribute name/value
pairs to set on stratigraphic unit object (using setattr). For example, back-
stripping will add the min_water_depth and max_water_depth attributes (when
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well()
has been called).

calc_decompacted_density(decompacted_thickness, decompacted_depth_to_top)
Calculate average decompacted density when top of this stratigraphic unit is at a decompacted depth.

Parameters

• decompacted_thickness (float) – Decompacted thickness of this stratigraphic unit as
returned by pybacktrack.StratigraphicUnit.calc_decompacted_thickness().

• decompacted_depth_to_top (float) – Decompacted depth of the top of this strati-
graphic unit.

Returns
Decompacted density.

80 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Return type
float

calc_decompacted_thickness(decompacted_depth_to_top)
Calculate decompacted thickness when top of this stratigraphic unit is at a decompacted depth.

Parameters
decompacted_depth_to_top (float) – Decompacted depth of the top of this stratigraphic
unit.

Returns
Decompacted thickness.

Return type
float

static create_partial_unit(unit, top_age)
Create a new stratigraphic unit equivalent to ‘unit’ but with the top part stripped off according to ‘top_age’.

Essentially sediment deposited from ‘top_age’ to the top age of ‘unit’ is stripped off (assuming a constant
sediment deposition rate for ‘unit’). And so ‘top_age’ is expected to be older/earlier than the top age of
‘unit’ (and younger than the bottom age of ‘unit’).

Parameters
top_age (float) – Top age of new stratigraphic unit.

Raises
ValueError – If ‘top_age’ is outside the top/bottom age range of ‘unit’.

Notes

This does not partially decompact ‘unit’. It is simply adjusting the top depth of new unit to correspond to
its new top age. Then when the returned partial stratigraphic unit is subsequently decompacted it’ll have
the correct volume of grains (assuming a constant sediment deposition rate) and hence be decompacted
correctly at its new top age.

New in version 1.4.

get_decompacted_sediment_rate()

Return fully decompacted sediment rate.

This is the fully decompacted thickness of this unit divided by its (deposition) time interval.

Returns
Decompacted sediment rate (in units of metres/Ma).

Return type
float

2.7. Reference 81



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

Fully decompacted is equivalent to assuming this unit is at the surface (ie, no units on top of it) and porosity
decay within the unit is not considered (in other words the weight of the upper part of the unit does not
compact the lower part of the unit).

get_fully_decompacted_thickness()

Get fully decompacted thickness. It is calculated on first call.

Returns
Fully decompacted thickness.

Return type
float

Notes

Fully decompacted is equivalent to assuming this unit is at the surface (ie, no units on top of it) and porosity
decay within the unit is not considered (in other words the weight of the upper part of the unit does not
compact the lower part of the unit).

New in version 1.4.

Decompacted well

Query decompacted sections at past times.

Summary

pybacktrack.DecompactedWell is a class containing the decompacted well data at a specific age.

pybacktrack.DecompactedStratigraphicUnit is a class to hold data for a decompacted stratigraphic unit.

Detail

class pybacktrack.DecompactedWell(surface_unit)
Class containing the decompacted well data at a specific age.

surface_unit

Top stratigraphic unit in this decompacted well.

Type
pybacktrack.StratigraphicUnit

total_compacted_thickness

Total compacted thickness of all stratigraphic units.

Type
float

total_decompacted_thickness

Total decompacted thickness of all decompacted stratigraphic units.

Type
float

82 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

tectonic_subsidence

Tectonic subsidence (in metres).

Note: This attribute is only available when backtracking (not backstripping). For example, it is available if
pybacktrack.backtrack_well() or pybacktrack.backtrack_and_write_well() has been called.

Type
float, optional

min_water_depth

Minimum water depth (in metres).

Note: This attribute is only available when backstripping (not backtracking). For example, it is available if
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called.

New in version 1.2.

Type
float, optional

max_water_depth

Maximum water depth (in metres).

Note: This attribute is only available when backstripping (not backtracking). For example, it is available if
pybacktrack.backstrip_well() or pybacktrack.backstrip_and_write_well() has been called.

New in version 1.2.

Type
float, optional

sea_level

Sea level in metres (positive for a sea-level rise and negative for a sea-level fall, relative to present day).

Note: This attribute is only available if a sea model was specified when backtracking or backstripping (for
example, if sea_level_model was specified in pybacktrack.backtrack_well() or pybacktrack.
backstrip_well()).

See also:

pybacktrack.DecompactedWell.get_sea_level()

Type
float, optional

dynamic_topography

Dynamic topography elevation relative to present day (in metres).

Note: This attribute contains dynamic topography relative to present day.

2.7. Reference 83



pyBacktrack Documentation, Release 1.5.0.dev8

Note: This attribute is only available when backtracking (not backstripping) and if a dynamic topogra-
phy model was specified. For example, it is available if dynamic_topography_model was specified in
pybacktrack.backtrack_well() or pybacktrack.backtrack_and_write_well()

Note: Dynamic topography is elevation which is opposite to tectonic subsidence in that an increase in
dynamic topography results in a decrease in tectonic subsidence.

See also:

pybacktrack.DecompactedWell.get_dynamic_topography()

New in version 1.2.

Type
float, optional

decompacted_stratigraphic_units

Decompacted stratigraphic units. They are sorted from top to bottom (in depth) which is the same as
youngest to oldest.

Type
list of pybacktrack.DecompactedStratigraphicUnit

__init__(surface_unit)
Create a decompacted well whose top stratigraphic unit is surface_unit.

Parameters
surface_unit (pybacktrack.StratigraphicUnit) – Top stratigraphic unit in this de-
compacted well.

Notes

You still need to add the decompacted units with pybacktrack.DecompactedWell.
add_decompacted_unit().

See also:

pybacktrack.Well.decompact()

add_decompacted_unit(stratigraphic_unit, decompacted_thickness, decompacted_density)
Add a decompacted stratigraphic unit.

Parameters

• stratigraphic_unit (pybacktrack.StratigraphicUnit) – Stratigraphic unit refer-
enced by decompacted stratigraphic unit.

• decompacted_thickness (float) – Decompacted thickness.

• decompacted_density (float) – Decompacted density.

84 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

Stratigraphic units should be decompacted from top of well column to bottom.

get_age()

Returns
Age of the surface of the decompacted column of the well.

Return type
float

get_average_decompacted_density()

Returns
Average density of the entire decompacted column of the well.

Return type
float

get_dynamic_topography(default_dynamic_topography=0.0)
Returns the dynamic topography elevation relative to present day, or default_dynamic_topography if
a dynamic topography model was not specified (when backtracking).

Returns
Dynamic topography elevation relative to present day.

Return type
float

Notes

Note: Returns dynamic topography relative to present day.

Returns the dynamic_topography attribute if a dynamic_topography_model was specified to
pybacktrack.backtrack_well() or pybacktrack.backtrack_and_write_well(), otherwise re-
turns default_dynamic_topography.

Note: Dynamic topography is elevation which is opposite to tectonic subsidence in that an increase in
dynamic topography results in a decrease in tectonic subsidence.

Note: default_dynamic_topography can be set to None

New in version 1.2.

get_min_max_tectonic_subsidence()

Returns the minimum and maximum tectonic subsidence obtained directly from subsidence model (if back-
tracking) or indirectly from minimum and maximum water depth and sea level (if backstripping).

Returns

• min_tectonic_subsidence (float) – Minimum tectonic subsidence (unloaded water depth)
of this decompacted well.

2.7. Reference 85



pyBacktrack Documentation, Release 1.5.0.dev8

• max_tectonic_subsidence (float) – Maximum tectonic subsidence (unloaded water depth)
of this decompacted well.

Notes

When backtracking, the tectonic subsidence is obtained directly from the tectonic_subsidence at-
tribute. In this case the minimum and maximum tectonic subsidence are the same.

When backstripping, the tectonic subsidence is obtained indirectly from the min_water_depth and
max_water_depth attributes and optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

get_min_max_tectonic_subsidence_from_water_depth(min_water_depth, max_water_depth,
sea_level=None)

Returns the minimum and maximum tectonic subsidence obtained from specified minimum and maximum
water depths (and optional sea level).

Parameters

• min_water_depth (float) – Minimum water depth.

• max_water_depth (float) – Maximum water depth.

• sea_level (float, optional) – Sea level relative to present day (positive to sea-level
rise and negative for sea-level fall).

Returns

• min_tectonic_subsidence (float) – Minimum tectonic subsidence (unloaded water depth)
of this decompacted well from its minimum water depth.

• max_tectonic_subsidence (float) – Maximum tectonic subsidence (unloaded water depth)
of this decompacted well from its maximum water depth.

Notes

Optional sea level fluctuation is included if specified.

get_min_max_water_depth()

Returns the minimum and maximum water depth obtained directly from minimum and maximum water
depth (if backstripping) or indirectly from tectonic subsidence model and sea level (if backtracking).

Returns

• min_water_depth (float) – Minimum water depth of this decompacted well.

• max_water_depth (float) – Maximum water depth of this decompacted well.

86 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

When backstripping, the minimum and maximum water depths are obtained directly from the
min_water_depth and max_water_depth attributes.

When backtracking, the water depth is obtained indirectly from the tectonic_subsidence attribute and
optional sea_level attribute (if a sea level model was specified). In this case the minimum and maximum
water depths are the same.

New in version 1.2.

get_sea_level(default_sea_level=0.0)
Returns the sea level relative to present day, or default_sea_level if a sea level model was not specified
(when either backtracking or backstripping).

Returns
Sea level relative to present day (positive to sea-level rise and negative for sea-level fall).

Return type
float

Notes

Returns the sea_level attribute if a sea_level_model was specified to pybacktrack.
backtrack_well() or pybacktrack.backstrip_well(), otherwise returns default_sea_level.

Note: default_sea_level can be set to None

New in version 1.2.

get_sediment_isostatic_correction()

Returns
Isostatic correction of this decompacted well.

Return type
float

Notes

The returned correction can be added to a known water depth to obtain the deeper isostatically compensated,
sediment-free water depth (tectonic subsidence). Or the correction could be subtracted from a known
tectonic subsidence (unloaded water depth) to get the depth at sediment/water interface.

get_tectonic_subsidence()

Returns the tectonic subsidence obtained directly from subsidence model (if backtracking) or indirectly
from average of minimum and maximum water depth and sea level (if backstripping).

Returns
Tectonic subsidence (unloaded water depth) of this decompacted well.

Return type
float

2.7. Reference 87



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

When backtracking, the tectonic subsidence is obtained directly from the tectonic_subsidence at-
tribute.

When backstripping, the tectonic subsidence is obtained indirectly from the min_water_depth and
max_water_depth attributes and optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

get_water_depth()

Returns the water depth obtained directly from average of minimum and maximum water depth (if back-
stripping) or indirectly from tectonic subsidence model and sea level (if backtracking).

Returns
Water depth of this decompacted well.

Return type
float

Notes

When backstripping, the water depth is obtained directly as an average of the min_water_depth and
max_water_depth attributes.

When backtracking, the water depth is obtained indirectly from the tectonic_subsidence attribute and
optional sea_level attribute (if a sea level model was specified).

New in version 1.2.

get_water_depth_from_tectonic_subsidence(tectonic_subsidence, sea_level=None)
Returns the water depth of this decompacted well from the specified tectonic subsidence (and optional sea
level).

Parameters

• tectonic_subsidence (float) – Tectonic subsidence.

• sea_level (float, optional) – Sea level relative to present day (positive to sea-level
rise and negative for sea-level fall).

Returns
Water depth of this decompacted well from its tectonic subsidence (unloaded water depth).

Return type
float

Notes

Optional sea level fluctuation (relative to present day) is included if specified.

class pybacktrack.DecompactedStratigraphicUnit(stratigraphic_unit, decompacted_thickness,
decompacted_density)

Class to hold data for a decompacted stratigraphic unit (decompacted at a specific age).

stratigraphic_unit

Stratigraphic unit referenced by this decompacted stratigraphic unit.

Type
pybacktrack.StratigraphicUnit

88 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

decompacted_thickness

Decompacted thickness.

Type
float

decompacted_density

Decompacted density.

Type
float

__init__(stratigraphic_unit, decompacted_thickness, decompacted_density)
Create a decompacted stratigraphic unit from a stratigraphic unit, decompacted thickness and decompacted
density.

Parameters

• stratigraphic_unit (pybacktrack.StratigraphicUnit) – Stratigraphic unit refer-
enced by this decompacted stratigraphic unit.

• decompacted_thickness (float) – Decompacted thickness.

• decompacted_density (float) – Decompacted density.

2.7.6 Converting oceanic age to depth

Convert ocean basin ages (Ma) to basement depth (metres) using different age/depth models.

Summary

pybacktrack.convert_age_to_depth() converts a single ocean basin age to basement depth.

pybacktrack.convert_age_to_depth_files() converts a sequence of ages (read from an input file) to depths
(and writes both ages and depths to an output file).

Detail

pybacktrack.convert_age_to_depth(age, model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL)
Convert ocean basin age to basement depth using a specified age/depth model.

Parameters

• age (float) – The age in Ma.

• model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.
AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1}
or function, optional) – The model to use when converting ocean age to basement
depth. It can be one of the enumerated values, or a callable function accepting a single
non-negative age parameter and returning depth (in metres).

Returns
Depth (in metres) as a positive number.

Return type
float

Raises

2.7. Reference 89



pyBacktrack Documentation, Release 1.5.0.dev8

• ValueError – If age is negative.

• TypeError – If model is not a recognised model, or a function accepting a single parameter.

pybacktrack.convert_age_to_depth_files(input_filename, output_filename,
model=pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL,
age_column_index=0, reverse_output_columns=False)

Converts age to depth by reading age rows from input file and writing rows containing both age and depth to
output file.

Parameters

• input_filename (string) – Name of input text file containing the age values. A single
age value is obtained from each row by indexing the age_column_index column (zero-based
index).

• output_filename (string) – Name of output text file containing age and depth values.
Each row of output file contains an age value and its associated depth value (with order
depending on reverse_output_columns).

• model ({pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18, pybacktrack.
AGE_TO_DEPTH_MODEL_CROSBY_2007, pybacktrack.AGE_TO_DEPTH_MODEL_GDH1}
or function, optional) – The model to use when converting ocean age to basement
depth. It can be one of the enumerated values, or a callable function accepting a single
non-negative age parameter and returning depth (in metres).

• age_column_index (int, optional) – Determines which column of input file to read
age values from.

• reverse_output_columns (bool, optional) – Determines order of age and depth
columns in output file. If True then output depth age, otherwise output age depth.

Raises
ValueError – If cannot read age value, as a floating-point number, from input file at column
index age_column_index.

2.7.7 Continental rifting

Continental passive margin initial rifting subsidence and subsequent thermal subsidence. Rifting is assumed instanta-
neous in that thermal contraction only happens after rifting has ended.

Summary

pybacktrack.estimate_rift_beta() estimates the stretching factor (beta).

pybacktrack.total_rift_subsidence() calcultaes the total subsidence as syn-rift plus post-rift.

pybacktrack.syn_rift_subsidence() calculates the initial subsidence due to continental stretching.

pybacktrack.post_rift_subsidence() calculates the thermal subsidence as a function of time.

90 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Detail

pybacktrack.estimate_rift_beta(present_day_subsidence, present_day_crustal_thickness, rift_end_time)
Estimate the stretching factor (beta).

Parameters

• present_day_subsidence (float) – The (sediment-free) subsidence at present day (in
metres).

• present_day_crustal_thickness (float) – The crustal thickness at present day (in me-
tres).

• rift_end_time (float) – The time that rifting ended (in My).

Returns

• beta (float) – The estimated stretching factor.

• residual (float) – The inaccuracy between present day subsidence and subsidence calculated
using the estimated stretching factor (beta).

Notes

Stretching factor (beta) is calculated by minimizing difference between actual subsidence and subsidence calcu-
lated from beta (both at present day).

pybacktrack.total_rift_subsidence(beta, pre_rift_crustal_thickness, time, rift_end_time,
rift_start_time=None)

Total subsidence as syn-rift plus post-rift.

Parameters

• beta (float) – Stretching factor.

• pre_rift_crustal_thickness (float) – Initial crustal thickness prior to rifting (in me-
tres).

• time (float) – Time to calculate subsidence (in My).

• rift_end_time (float) – Time at which rifting ended (in My).

• rift_start_time (float, optional) – Time at which rifting started (in My). If
not specified then assumes initial (non-thermal) subsidence happens instantaneously at
rift_end_time. Defaults to rift_end_time.

Returns
Total subsidence (in metres).

Return type
float

pybacktrack.syn_rift_subsidence(beta, pre_rift_crustal_thickness)
Initial subsidence (in metres) due to continental stretching.

Parameters

• beta (float) – Stretching factor.

• pre_rift_crustal_thickness (float) – Initial crustal thickness prior to rifting (in me-
tres).

2.7. Reference 91



pyBacktrack Documentation, Release 1.5.0.dev8

Returns
Initial subsidence (in metres) due to continental stretching.

Return type
float

pybacktrack.post_rift_subsidence(beta, time)
Thermal subsidence (in metres) as a function of time.

Parameters

• beta (float) – Stretching factor.

• time (float) – The amount of time that has passed after rifting/stretching has ended.

Returns
Thermal subsidence (in metres).

Return type
float

2.7.8 Dynamic topography

Summary

pybacktrack.DynamicTopography is a class that reconstructs point location(s) and samples (and interpolates) time-
dependent dynamic topography mantle frame grids.

pybacktrack.InterpolateDynamicTopography is a class that just samples and interpolates time-dependent dy-
namic topography mantle frame grid files.

Detail

class pybacktrack.DynamicTopography(grid_list_filename, static_polygon_filename, rotation_filenames,
longitude, latitude, age=None)

Class that reconstructs point location(s) and samples (and interpolates) time-dependent dynamic topography
mantle frame grid files.

longitude

Longitude of the point location, or list of longitudes (if multiple point locations).

Type
float or list of float

latitude

Latitude of the point location, or list of latitudes (if multiple point locations).

Type
float or list of float

age

The age of the crust that the point location is on, or list of ages (if multiple point locations).

Note: If no age(s) was supplied then the age(s) of the static polygon(s) containing location(s) is used (or
zero when no polygon contains a location).

92 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Type
float or list of float

Notes

Changed in version 1.4: Can have multiple point locations (version 1.3 allowed only one location). So
longitude, latitude and age can all have either a single value or multiple values (same number for each).

__init__(grid_list_filename, static_polygon_filename, rotation_filenames, longitude, latitude, age=None)
Load dynamic topography grid filenames and associated ages from grid list file ‘grid_list_filename’.

Parameters

• grid_list_filename (str) – The filename of the grid list file.

• static_polygon_filename (str) – The filename of the static polygons file.

• rotation_filenames (list of str) – The list of rotation filenames.

• longitude (float or list of float) – Longitude of the point location, or list of
longitudes (if multiple point locations).

• latitude (float or list of float) – Latitude of the point location, or list of lati-
tudes (if multiple point locations).

• age (float or list of float, optional) – The age of the crust that the point loca-
tion is on, or list of ages (if multiple point locations). If not specified then the appearance
age(s) of the static polygon(s) containing the point(s) is used.

Raises

• ValueError – If any age is negative (if specified).

• ValueError – If longitude and latitude (and age if specified) are all not a single
value or all not a sequence (of same length).

• ValueError – If grid_list_filename does not contain a grid at present day,
or grid_list_filename contains fewer than two grids, or not all rows in
grid_list_filename contain a grid filename followed by an age, or there are two ages
in grid_list_filename with same age.

Notes

Each dynamic topography grid should be in the mantle reference frame (not plate reference frame) and
should have global coverage (such that no sample location will return NaN).

Each row in the grid list file should contain two columns. First column containing filename (relative to di-
rectory of list file) of a dynamic topography grid at a particular time. Second column containing associated
time (in Ma).

Each present day location is also assigned a plate ID using the static polygons, and the rotations are used
to reconstruct each location when sampling the grids at a reconstructed time.

Changed in version 1.4: The following changes were made:

• Added ability to specify a list of point locations (as an alternative to specifying a single location).

• Raises ValueError if there’s no present day grid or if any age is negative.

2.7. Reference 93



pyBacktrack Documentation, Release 1.5.0.dev8

static create_from_bundled_model(dynamic_topography_model_name, longitude, latitude, age=None)
Create a DynamicTopography instance from a bundled dynamic topography model name.

Parameters

• dynamic_topography_model_name (str) – Name of a bundled dynamic topography
model. Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean,
AY18, KM16, D10_gmcm9 and gld428.

• longitude (float or list of float) – Longitude of the point location, or list of
longitudes (if multiple point locations).

• latitude (float or list of float) – Latitude of the point location, or list of lati-
tudes (if multiple point locations).

• age (float or list of float, optional) – The age of the crust that the point loca-
tion is on, or list of ages (if multiple point locations). If not specified then the appearance
age(s) of the static polygon(s) containing the point(s) is used.

Returns
The bundled dynamic topography model.

Return type
pybacktrack.DynamicTopography

Raises
ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic
topography model.

Notes

New in version 1.2.

Changed in version 1.4: Added ability to specify a list of point locations (as an alternative to specifying a
single location).

static create_from_model_or_bundled_model_name(dynamic_topography_model_or_bundled_model_name,
longitude, latitude, age=None)

Create a DynamicTopography instance from a user-provided model or from a bundled model.

Parameters

• dynamic_topography_model_or_bundled_model_name (str or 3-tuple (str,
str, list of str)) – Either the name of a bundled dynamic topography model (see
pybacktrack.DynamicTopography.create_from_bundled_model()), or a user-
provided model specified as a 3-tuple (filename of the grid list file, filename of the static
polygons file, list of rotation filenames) (see first three parameters of pybacktrack.
DynamicTopography.__init__()).

• longitude (float or list of float) – Longitude of the point location, or list of
longitudes (if multiple point locations).

• latitude (float or list of float) – Latitude of the point location, or list of lati-
tudes (if multiple point locations).

• age (float or list of float, optional) – The age of the crust that the point loca-
tion is on, or list of ages (if multiple point locations). If not specified then the appearance
age(s) of the static polygon(s) containing the point(s) is used.

Returns
The dynamic topography model loaded from a user-provided model or from a bundled model.

94 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Return type
pybacktrack.DynamicTopography

Notes

New in version 1.4.

static get_bundled_model(dynamic_topography_model_name)
Get the bundled model files for the specified dynamic topography model name.

Parameters
dynamic_topography_model_name (str) – Name of a bundled dynamic topography
model. Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18,
KM16, D10_gmcm9 and gld428.

Returns

The bundled dynamic topography model files (see first three parameters of pybacktrack.
DynamicTopography.__init__()). This consists of a 3-tuple of:

• Filename of the grid list file.

• Filename of the static polygons file.

• List of rotation filenames.

Return type
3-tuple of (grid_list_filename, static_polygon_filename, rotation_filenames)

Raises
ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic
topography model.

Notes

The returned model information is obtained from pybacktrack.
BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS (see Bundle data).

New in version 1.5.

sample(time, fallback=True)
Samples and interpolates the two time-dependent dynamic topography grids surrounding time at point lo-
cation(s) reconstructed to time, but optionally falls back to a non-optimal sampling if necessary (depending
on time)

Parameters

• time (float) – Time to sample dynamic topography.

• fallback (bool) – Whether to fall back to a non-optimal sampling if neccessary (see
notes below). Defaults to True.

Returns

The sampled dynamic topography value or list of values. If constructed with a single location
then returns a single value, otherwise returns a list of values (one per location).

When fallback is True then float('NaN`)will never be returned (see notes below). When
fallback is False then float('NaN`) will be returned:

• for all points when the oldest dynamic topography grid is younger than time, or

2.7. Reference 95



pyBacktrack Documentation, Release 1.5.0.dev8

• for each point location whose age is younger than time (ie, has not yet appeared).

Return type
float or list of float

Notes

Each point location is first reconstructed to time before sampling the two grids surrounding time at the
reconstructed location and interpolating between them.

For each point location, if time is older than its appearance age then it is still reconstructed to time when
fallback is True, otherwise float('NaN`) is returned (for that location) when fallback is False.

If time is older than the oldest grid then the oldest grid is sampled when fallback is True, otherwise
float('NaN`) is returned for all locations when fallback is False.

Changed in version 1.2: Previously this method was called sample_interpolated and did not fall back to
non-optimal sampling when necessary.

Changed in version 1.4: The following changes were made:

• Merged sample, sample_interpolated and sample_oldest methods into one method (this method).

• Added fallback parameter (where False behaves like removed sample_interpolated method).

• Added ability to specify a list of point locations (as an alternative to specifying a single location).

• Changed how grids are interpolated:

– Version 1.3 (and earlier) reconstructed each location to two times (of the two grids surrounding
time) to get two reconstructed locations. Then each reconstructed location sampled its respective
grid (ie, each grid was sampled at a different reconstructed location). Then these two samples
were interpolated (based on time).

– Version 1.4 reconstructs each location to the single time to get a single reconstructed location.
Then that single reconstructed location samples both grids surrounding time (ie, each grid is
sampled at the same reconstructed location). Then these two samples are interpolated (based on
time).

. . . note that there is no difference at grid times (only between grid times).

class pybacktrack.InterpolateDynamicTopography(grid_list_filename)
Class that just samples and interpolates time-dependent dynamic topography mantle frame grid files.

This class accepts locations that have already been reconstructed whereas pybacktrack.DynamicTopography
accepts present day locations and reconstructs them prior to sampling the dynamic topography grids.

Notes

New in version 1.4.

__init__(grid_list_filename)
Load dynamic topography grid filenames and associated ages from grid list file ‘grid_list_filename’.

Parameters
grid_list_filename (str) – The filename of the grid list file.

Raises
ValueError – If grid_list_filename does not contain a grid at present
day, or grid_list_filename contains fewer than two grids, or not all rows in

96 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

grid_list_filename contain a grid filename followed by an age, or there are two
ages in grid_list_filename with same age.

Notes

Each dynamic topography grid should be in the mantle reference frame (not plate reference frame) and
should have global coverage (such that no sample location will return NaN).

Each row in the grid list file should contain two columns. First column containing filename (relative to di-
rectory of list file) of a dynamic topography grid at a particular time. Second column containing associated
time (in Ma).

New in version 1.4.

static create_from_bundled_model(dynamic_topography_model_name)
Create a InterpolateDynamicTopography instance from a bundled dynamic topography model name.

Parameters
dynamic_topography_model_name (str) – Name of a bundled dynamic topography
model. Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18,
KM16, D10_gmcm9 and gld428.

Returns
The bundled dynamic topography model.

Return type
pybacktrack.InterpolateDynamicTopography

Raises
ValueError – If dynamic_topography_model_name is not the name of a bundled dynamic
topography model.

Notes

New in version 1.4.

static create_from_model_or_bundled_model_name(dynamic_topography_model_or_bundled_model_name)
Create a InterpolateDynamicTopography instance from a user-provided model or from a bundled model.

Parameters
dynamic_topography_model_or_bundled_model_name (str) – Either
the name of a bundled dynamic topography model (see pybacktrack.
InterpolateDynamicTopography.create_from_bundled_model()), or a user-
provided model specified as the filename of the grid list file (see parameter of pybacktrack.
InterpolateDynamicTopography.__init__()).

Raises
ValueError – If dynamic_topography_model_or_bundled_model_name is not the
name of a bundled dynamic topography model or the filename of an existing grid list file.

Returns
The dynamic topography model loaded from a user-provided model or from a bundled model.

Return type
pybacktrack.InterpolateDynamicTopography

2.7. Reference 97



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

New in version 1.4.

sample(time, locations, fallback_to_oldest=True)
Samples and interpolates the two time-dependent dynamic topography grids surrounding time at the spec-
ified point location(s), but optionally falls back to sampling oldest grid (if time is too old).

Parameters

• time (float) – Time to sample dynamic topography.

• locations (sequence of 2-tuple (float, float)) – A sequence of (longitude,
latitude) point locations.

• fallback_to_oldest (bool) – Whether to fall back to sampling oldest grid (if time is
too old) rather than interpolating the two grids surrounding time. Defaults to True.

Returns

The sampled dynamic topography values (one per location).

When time is older than the oldest dynamic topography grid:

• if fallback_to_oldest is True then the oldest dynamic topography grid is sampled, or

• if fallback_to_oldest is False then None is returned.

Return type
list of float, or None

Notes

The point location(s) sample the two grids with ages bounding time and then interpolate between them.

However if time is older than the oldest grid then the oldest grid is sampled (if fallback_to_oldest is
True).

All returned sample values are non-NaN.

New in version 1.4.

2.7.9 Average sea level variations

Read a sea level file and compute average sea level variations during time periods.

Summary

pybacktrack.SeaLevel is a class that calculates integrated sea levels (relative to present day) over a time period.

98 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Detail

class pybacktrack.SeaLevel(sea_level_filename)
Class to calculate integrated sea levels (relative to present day) over a time period.

__init__(sea_level_filename)
Load sea level curve (linear segments) from file.

Parameters
sea_level_filename (str) – Text file with first column containing ages (Ma) and a corre-
sponding second column of sea levels (m).

static create_from_bundled_model(sea_level_model_name)
Create a SeaLevel instance from a bundled sea level model name.

Parameters
sea_level_model_name (string) – Name of a bundled sea level model. Bundled sea level
models include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

Returns
The bundled sea level model.

Return type
pybacktrack.SeaLevel

Raises
ValueError – If sea_level_model_name is not the name of a bundled sea level model.

Notes

New in version 1.2.

static create_from_model_or_bundled_model_name(sea_level_model_or_bundled_model_name)
Create a SeaLevel instance from a user-provided model or from a bundled model.

Parameters
sea_level_model_or_bundled_model_name (string) – Either a user-provided
model specified as a text filename containing sea level curve (see pybacktrack.
SeaLevel.__init__()), or name of a bundled model (see pybacktrack.SeaLevel.
create_from_bundled_model()), .

Returns
The sea level model loaded from a user-provided model or from a bundled model.

Return type
pybacktrack.SeaLevel

Notes

New in version 1.4.

get_average_level(begin_time, end_time)
Return the average sea level over the specified time period.

Parameters

• begin_time (float) – The begin time (in Ma). Should be larger than end_time.

• end_time (float) – The end time (in Ma). Should be smaller than begin_time.

2.7. Reference 99



pyBacktrack Documentation, Release 1.5.0.dev8

Returns
Average sea level (in metres).

Return type
float

Notes

The average sea level is obtained by integrating sea level curve over the specified time period and then
dividing by time period.

2.7.10 Converting stratigraphic depth to age

Convert stratigraphic depths (metres) to age (Ma) using an depth-to-age model.

Summary

pybacktrack.convert_stratigraphic_depth_to_age() converts a single stratigraphic depth to an age.

pybacktrack.convert_stratigraphic_depth_to_age_files() converts a sequence of stratigraphic depths
(read from an input file) to ages (and writes both ages and depths, and any lithologies in the input file, to an output file).

Detail

pybacktrack.convert_stratigraphic_depth_to_age(age, depth_to_age_model)
Convert stratigraphic depth to age using a specified depth-to-age model.

Parameters

• depth (float) – The stratigraphic depth in metres.

• depth_to_age_model (function) – The model to use when converting stratigraphic depth
to age. A callable function accepting a single non-negative depth parameter (in metres) and
returning age (in Ma).

Returns
Age (in Ma) as a positive number.

Return type
float

Raises

• ValueError – If depth is negative.

• TypeError – If depth_to_age_model is not a function accepting a single parameter.

100 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

Notes

New in version 1.5.

pybacktrack.convert_stratigraphic_depth_to_age_files(input_filename, output_filename,
depth_to_age_model,
reverse_output_columns=False)

Converts stratigraphic depth to age by reading depth rows (in first column) from input file and writing rows
containing both age and depth to output file.

Parameters

• input_filename (string) – Name of input text file containing the depth values. A single
depth value is obtained from each row by indexing the first column.

• output_filename (string) – Name of output text file containing age and depth values.
Each row of output file contains an age value and its associated depth value (with order
depending on reverse_output_columns).

• depth_to_age_model (function) – The model to use when converting stratigraphic depth
to age. A callable function accepting a single non-negative depth parameter (in metres), and
returning age (in Ma) or None to exclude from output.

• reverse_output_columns (bool, optional) – Determines order of age and depth
columns in output file. If True then output depth age, otherwise output age depth.

Raises

• ValueError – If cannot read depth value, as a floating-point number, from input file in the
first column.

• ValueError – If stratigraphic depths are not monotonically increasing.

Notes

New in version 1.5.

2.7.11 Utilities

Interpolate a sequence of linear segments read from a 2-column file at the values read from a 1-column file.

Summary

pybacktrack.read_interpolate_function() reads x and y columns from a curve file and returns a function y(x)
that linearly interpolates.

pybacktrack.interpolate_file() interpolates a curve function at x positions, read from input file, and stores both
x and interpolated y values to output file.

2.7. Reference 101



pyBacktrack Documentation, Release 1.5.0.dev8

Detail

pybacktrack.read_interpolate_function(curve_filename, x_column_index=0, y_column_index=1,
out_of_bounds='clamp')

Read x and y columns from a curve file and return a function y(x) that linearly interpolates.

Parameters

• curve_filename (string) – Name of input text file containing the x and y data from which
to create the returned curve function.

• x_column_index (int, optional) – Determines which column of input text file to read
x values from.

• y_column_index (int, optional) – Determines which column of input text file to read
y values from.

• out_of_bounds (string, optional) – Determines the y value returned by curve function
when x is outside the range of x values in curve file. This can be:

– clamp to return the boundary y value, or

– exclude to return None (eg, to indicate that there’s no y value), or

– extrapolate to return an extrapolated value.

Returns

• curve_function (function) – A callable function y=f(x) accepting a single x argument, and
returning a y value or None (if no y value).

• x_column (list of float) – The x values read from the curve file.

• y_column (list of float) – The y values read from the curve file.

Raises

• ValueError – If cannot read x and y columns, as floating-point numbers, from the curve
file at column indices x_column_index and y_column_index.

• ValueError – If curve file contains no data.

• ValueError – If out_of_bounds is not clamp, exclude or extrapolate.

Notes

The returned x and y columns are useful if integrating the curve function with scipy.integrate.quad (since
can pass x column to its points argument and len(x) to its limit).

Changed in version 1.5: Added out_of_bounds argument. If out_of_bounds is exclude then returned curve func-
tion will return None for any input x outside the range of x values in curve file.

pybacktrack.interpolate_file(curve_function, input_filename, output_filename, input_x_column_index=0,
reverse_output_columns=False)

Interpolate curve_function at x positions, read from input file, and store both x and interpolated y values to output
file.

Parameters

• curve_function (function) – A callable function y=f(x) accepting a single x argument
and returning a y value (or None to exclude from output).

102 Chapter 2. Contents



pyBacktrack Documentation, Release 1.5.0.dev8

• input_filename (string) – Name of input text file containing the x positions at which
to sample curve_function. A single x value is obtained from each row by indexing the in-
put_x_column_index column (zero-based index).

• output_filename (string) – Name of output text file containing x and y values. Each
row of output file contains an x value and its associated y value (with order depending on
reverse_output_columns).

• input_x_column_index (int, optional) – Determines which column of input file to
read x values from.

• reverse_output_columns (bool, optional) – Determines order of x and y columns in
output file. If True then output y x, otherwise output x y.

Raises
ValueError – If cannot read an x value, as a floating-point number, from input file at column
index input_x_column_index.

Notes

Changed in version 1.5: curve_function can return None, in which case there is no output row for the input x.

2.7.12 Constants

This section covers the various pre-defined constants that can be passed to the above functions and classes.

Bundle data

The following bundled data comes included with the pybacktrack package:

• a lithologies text file

• an age grid

• a sediment thickness grid

• a crustal thickness grid

• a topography grid

• a collection of common dynamic topography models

• a couple of sea level curves

The following attributes are available to access the bundled data:

pybacktrack.BUNDLE_PATH
Base directory of the bundled data.

This is an absolute path so that scripts outside the pybacktrack package can also reference the bundled data.
All bundle data paths are derived from this base path.

pybacktrack.BUNDLE_LITHOLOGY_FILENAMES
A list of bundled lithology filenames.

pybacktrack.DEFAULT_BUNDLE_LITHOLOGY_FILENAME
Same as pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME.

pybacktrack.PRIMARY_BUNDLE_LITHOLOGY_FILENAME
The primary lithology filename contains the lithologies covered in Table 1 in the pyBacktrack paper:

2.7. Reference 103



pyBacktrack Documentation, Release 1.5.0.dev8

• Muller, R. D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018, PyBacktrack 1.0: A Tool for Recon-
structing Paleobathymetry on Oceanic and Continental Crust, Geochemistry, Geophysics, Geosystems,
19, 1898-1909, doi: 10.1029/2017GC007313.

pybacktrack.EXTENDED_BUNDLE_LITHOLOGY_FILENAME
The optional extended lithology filename extends the primary lithologies, and mostly contains lithologies in
shallow water.

pybacktrack.BUNDLE_AGE_GRID_FILENAME
Bundled age grid file.

pybacktrack.BUNDLE_TOPOGRAPHY_FILENAME
Bundled topography/bathymetry grid file.

pybacktrack.BUNDLE_TOTAL_SEDIMENT_THICKNESS_FILENAME
Bundled total sediment thickness grid file.

pybacktrack.BUNDLE_CRUSTAL_THICKNESS_FILENAME
Bundled crustal thickness grid file.

pybacktrack.BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS
Bundled dynamic topography models.

This is a dict mapping dynamic topography model name to model information 3-tuple of (grid list file-
names, static polygon filename and rotation filenames). Each key or value in the dict can be passed
to the dynamic_topography_model argument of pybacktrack.backtrack_well() and pybacktrack.
backtrack_and_write_well().

pybacktrack.BUNDLE_DYNAMIC_TOPOGRAPHY_MODEL_NAMES
A list of bundled dynamic topography model names (keys in BUNDLE_DYNAMIC_TOPOGRAPHY_MODELS).

Choices include terra, M1, M2, M3, M4, M5, M6, M7, ngrand, s20rts, smean, AY18, KM16, D10_gmcm9 and
gld428.

pybacktrack.BUNDLE_SEA_LEVEL_MODELS
Bundled sea level models.

This is a dict mapping sea level model name to sea level file. Each key or value in the dict can
be passed to the sea_level_model argument of pybacktrack.backtrack_well() and pybacktrack.
backtrack_and_write_well().

pybacktrack.BUNDLE_SEA_LEVEL_MODEL_NAMES
A list of bundled sea level model names (keys in BUNDLE_SEA_LEVEL_MODELS).

Choices include Haq87_SealevelCurve and Haq87_SealevelCurve_Longterm.

pybacktrack.BUNDLE_RECONSTRUCTION_ROTATION_FILENAMES
Rotation files of the reconstruction model used to reconstruct sediment-deposited crust for paleobathymetry
gridding.

pybacktrack.BUNDLE_RECONSTRUCTION_STATIC_POLYGON_FILENAME
Static polygon file of the reconstruction model used to assign plate IDs to points on sediment-deposited crust for
paleobathymetry gridding.

104 Chapter 2. Contents

https://doi.org/10.1029/2017GC007313
https://doi.org/10.1029/2017GC007313


pyBacktrack Documentation, Release 1.5.0.dev8

Backtracking

pybacktrack.BACKTRACK_DEFAULT_DECOMPACTED_COLUMNS
Default list of decompacted columns used for decompacted_columns argument of pybacktrack.
backtrack_well() and pybacktrack.backtrack_and_write_well().

List of column types available for the decompacted_columns argument of pybacktrack.backtrack_well() and
pybacktrack.backtrack_and_write_well():

• pybacktrack.BACKTRACK_COLUMN_AGE

• pybacktrack.BACKTRACK_COLUMN_COMPACTED_DEPTH

• pybacktrack.BACKTRACK_COLUMN_COMPACTED_THICKNESS

• pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_THICKNESS

• pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DENSITY

• pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_SEDIMENT_RATE

• pybacktrack.BACKTRACK_COLUMN_DECOMPACTED_DEPTH

• pybacktrack.BACKTRACK_COLUMN_DYNAMIC_TOPOGRAPHY

• pybacktrack.BACKTRACK_COLUMN_TECTONIC_SUBSIDENCE

• pybacktrack.BACKTRACK_COLUMN_WATER_DEPTH

• pybacktrack.BACKTRACK_COLUMN_LITHOLOGY

Backstripping

pybacktrack.BACKSTRIP_DEFAULT_DECOMPACTED_COLUMNS
Default list of decompacted columns used for decompacted_columns argument of pybacktrack.
backstrip_well() and pybacktrack.backstrip_and_write_well().

List of column types available for the decompacted_columns argument of pybacktrack.backstrip_well() and
pybacktrack.backstrip_and_write_well():

• pybacktrack.BACKSTRIP_COLUMN_AGE

• pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_THICKNESS

• pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DENSITY

• pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_SEDIMENT_RATE

• pybacktrack.BACKSTRIP_COLUMN_DECOMPACTED_DEPTH

• pybacktrack.BACKSTRIP_COLUMN_AVERAGE_TECTONIC_SUBSIDENCE

• pybacktrack.BACKSTRIP_COLUMN_MIN_TECTONIC_SUBSIDENCE

• pybacktrack.BACKSTRIP_COLUMN_MAX_TECTONIC_SUBSIDENCE

• pybacktrack.BACKSTRIP_COLUMN_AVERAGE_WATER_DEPTH

• pybacktrack.BACKSTRIP_COLUMN_MIN_WATER_DEPTH

• pybacktrack.BACKSTRIP_COLUMN_MAX_WATER_DEPTH

• pybacktrack.BACKSTRIP_COLUMN_COMPACTED_THICKNESS

• pybacktrack.BACKSTRIP_COLUMN_LITHOLOGY

• pybacktrack.BACKSTRIP_COLUMN_COMPACTED_DEPTH

2.7. Reference 105



pyBacktrack Documentation, Release 1.5.0.dev8

Paleobathymetry

pybacktrack.DEFAULT_PALEO_BATHYMETRY_LITHOLOGY_NAME
Default name of the lithology of all sediment (for paleo bathymetry gridding the total sediment thickness at all
sediment locations consists of a single lithology). This lithology is the average of the ocean floor sediment.
This differs from the base lithology of drill sites where the undrilled portions are usually below the Carbonate
Compensation Depth (CCD) where shale dominates.

Lithology

pybacktrack.DEFAULT_BASE_LITHOLOGY_NAME
Default name of the lithology of the stratigraphic unit at the base of a drill site (the undrilled portion). This
lithology is shale since the undrilled portions are usually below the Carbonate Compensation Depth (CCD)
where shale dominates.

Oceanic subsidence

pybacktrack.AGE_TO_DEPTH_MODEL_RHCW18
Richards et al. (2020) Structure and dynamics of the oceanic lithosphere-asthenosphere
system.

pybacktrack.AGE_TO_DEPTH_MODEL_CROSBY_2007
Crosby, A.G., (2007) Aspects of the relationship between topography and gravity on the
Earth and Moon, PhD thesis.

pybacktrack.AGE_TO_DEPTH_MODEL_GDH1
Stein and Stein (1992) Model for the global variation in oceanic depth and heat flow with
lithospheric age.

pybacktrack.AGE_TO_DEPTH_DEFAULT_MODEL
The age-to-depth model to use by default.

106 Chapter 2. Contents



CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

107



pyBacktrack Documentation, Release 1.5.0.dev8

108 Chapter 3. Indices and tables



INDEX

Symbols
__init__() (pybacktrack.DecompactedStratigraphicUnit

method), 89
__init__() (pybacktrack.DecompactedWell method),

84
__init__() (pybacktrack.DynamicTopography method),

93
__init__() (pybacktrack.InterpolateDynamicTopography

method), 96
__init__() (pybacktrack.Lithology method), 73
__init__() (pybacktrack.SeaLevel method), 99
__init__() (pybacktrack.StratigraphicUnit method), 80
__init__() (pybacktrack.Well method), 77

A
add_compacted_unit() (pybacktrack.Well method), 78
add_decompacted_unit() (pyback-

track.DecompactedWell method), 84
age (pybacktrack.DynamicTopography attribute), 92

B
backstrip_and_write_well() (in module pyback-

track), 65
backstrip_well() (in module pybacktrack), 62
backtrack_and_write_well() (in module pyback-

track), 59
backtrack_well() (in module pybacktrack), 56
bottom_age (pybacktrack.StratigraphicUnit attribute),

79
bottom_depth (pybacktrack.StratigraphicUnit at-

tribute), 79

C
calc_decompacted_density() (pyback-

track.StratigraphicUnit method), 80
calc_decompacted_thickness() (pyback-

track.StratigraphicUnit method), 81
convert_age_to_depth() (in module pybacktrack), 89
convert_age_to_depth_files() (in module pyback-

track), 90
convert_stratigraphic_depth_to_age() (in mod-

ule pybacktrack), 100

convert_stratigraphic_depth_to_age_files()
(in module pybacktrack), 101

create_from_bundled_model() (pyback-
track.DynamicTopography static method),
93

create_from_bundled_model() (pyback-
track.InterpolateDynamicTopography static
method), 97

create_from_bundled_model() (pyback-
track.SeaLevel static method), 99

create_from_model_or_bundled_model_name()
(pybacktrack.DynamicTopography static
method), 94

create_from_model_or_bundled_model_name()
(pybacktrack.InterpolateDynamicTopography
static method), 97

create_from_model_or_bundled_model_name()
(pybacktrack.SeaLevel static method), 99

create_lithology() (in module pybacktrack), 74
create_lithology_from_components() (in module

pybacktrack), 74
create_partial_unit() (pyback-

track.StratigraphicUnit static method), 81

D
decompact() (pybacktrack.Well method), 78
decompacted_bottom_depth (pyback-

track.StratigraphicUnit attribute), 79
decompacted_density (pyback-

track.DecompactedStratigraphicUnit attribute),
89

decompacted_stratigraphic_units (pyback-
track.DecompactedWell attribute), 84

decompacted_thickness (pyback-
track.DecompactedStratigraphicUnit attribute),
89

decompacted_top_depth (pyback-
track.StratigraphicUnit attribute), 79

DecompactedStratigraphicUnit (class in pyback-
track), 88

DecompactedWell (class in pybacktrack), 82
dynamic_topography (pybacktrack.DecompactedWell

109



pyBacktrack Documentation, Release 1.5.0.dev8

attribute), 83
DynamicTopography (class in pybacktrack), 92

E
estimate_rift_beta() (in module pybacktrack), 91

G
generate_lon_lat_points() (in module pyback-

track), 67
get_age() (pybacktrack.DecompactedWell method), 85
get_average_decompacted_density() (pyback-

track.DecompactedWell method), 85
get_average_level() (pybacktrack.SeaLevel method),

99
get_bundled_model() (pyback-

track.DynamicTopography static method),
95

get_decompacted_sediment_rate() (pyback-
track.StratigraphicUnit method), 81

get_dynamic_topography() (pyback-
track.DecompactedWell method), 85

get_fully_decompacted_thickness() (pyback-
track.StratigraphicUnit method), 82

get_min_max_tectonic_subsidence() (pyback-
track.DecompactedWell method), 85

get_min_max_tectonic_subsidence_from_water_depth()
(pybacktrack.DecompactedWell method), 86

get_min_max_water_depth() (pyback-
track.DecompactedWell method), 86

get_sea_level() (pybacktrack.DecompactedWell
method), 87

get_sediment_isostatic_correction() (pyback-
track.DecompactedWell method), 87

get_tectonic_subsidence() (pyback-
track.DecompactedWell method), 87

get_water_depth() (pybacktrack.DecompactedWell
method), 88

get_water_depth_from_tectonic_subsidence()
(pybacktrack.DecompactedWell method), 88

I
interpolate_file() (in module pybacktrack), 102
InterpolateDynamicTopography (class in pyback-

track), 96

L
latitude (pybacktrack.DynamicTopography attribute),

92
latitude (pybacktrack.Well attribute), 77
Lithology (class in pybacktrack), 73
lithology_components (pyback-

track.StratigraphicUnit attribute), 80
longitude (pybacktrack.DynamicTopography attribute),

92

longitude (pybacktrack.Well attribute), 77

M
max_water_depth (pybacktrack.DecompactedWell at-

tribute), 83
max_water_depth (pybacktrack.StratigraphicUnit

attribute), 80
min_water_depth (pybacktrack.DecompactedWell at-

tribute), 83
min_water_depth (pybacktrack.StratigraphicUnit

attribute), 79

P
post_rift_subsidence() (in module pybacktrack), 92

R
read_interpolate_function() (in module pyback-

track), 102
read_lithologies_file() (in module pybacktrack),

73
read_lithologies_files() (in module pybacktrack),

73
read_well_file() (in module pybacktrack), 75
reconstruct_paleo_bathymetry() (in module py-

backtrack), 67
reconstruct_paleo_bathymetry_grids() (in mod-

ule pybacktrack), 70

S
sample() (pybacktrack.DynamicTopography method),

95
sample() (pybacktrack.InterpolateDynamicTopography

method), 98
sea_level (pybacktrack.DecompactedWell attribute), 83
SeaLevel (class in pybacktrack), 99
stratigraphic_unit (pyback-

track.DecompactedStratigraphicUnit attribute),
88

stratigraphic_units (pybacktrack.Well attribute), 77
StratigraphicUnit (class in pybacktrack), 79
surface_unit (pybacktrack.DecompactedWell at-

tribute), 82
syn_rift_subsidence() (in module pybacktrack), 91

T
tectonic_subsidence (pybacktrack.DecompactedWell

attribute), 82
top_age (pybacktrack.StratigraphicUnit attribute), 79
top_depth (pybacktrack.StratigraphicUnit attribute), 79
total_compacted_thickness (pyback-

track.DecompactedWell attribute), 82
total_decompacted_thickness (pyback-

track.DecompactedWell attribute), 82

110 Index



pyBacktrack Documentation, Release 1.5.0.dev8

total_rift_subsidence() (in module pybacktrack),
91

W
Well (class in pybacktrack), 77
write_backstrip_well() (in module pybacktrack), 64
write_backtrack_well() (in module pybacktrack), 59
write_paleo_bathymetry_grids() (in module py-

backtrack), 70
write_well_file() (in module pybacktrack), 76
write_well_metadata() (in module pybacktrack), 76

Index 111


	Reference
	Contents
	Getting Started
	Installation
	Install pybacktrack
	Using conda
	Using pip
	Requirements
	Install Python, Pip, GMT and pyGPlates on Ubuntu
	Install Python, Pip, GMT and pyGPlates on Mac using Macports
	Install pybacktrack

	Using Docker

	Install the examples
	Install supplementary scripts


	A Backtracking Example
	Use a built-in module script
	Import into your own script


	Overview
	Running pyBacktrack
	Running the scripts built into pyBacktrack
	backtrack
	backstrip
	paleo_bathymetry
	age_to_depth
	stratigraphic_depth_to_age
	interpolate

	Running your own script that imports pyBacktrack
	backtrack
	backstrip
	paleo_bathymetry
	age_to_depth
	stratigraphic_depth_to_age
	interpolate


	Stratigraphy
	Drill site
	Backtracking versus backstripping sites
	Drill site file format
	Base sediment layer
	Geohistory analysis

	Lithology Definitions
	Bundled lithology definitions
	Lithology file format
	Specifying lithology definitions
	Conflicting lithology definitions


	Backtrack
	Overview
	Running backtrack
	Example

	Backtrack output
	Amended drill site output
	Decompacted output

	Sea level variation
	Oceanic and continental tectonic subsidence
	Oceanic versus continental drill sites
	Present-day tectonic subsidence

	Oceanic subsidence
	Continental subsidence
	Dynamic topography
	Geohistory analysis
	Continental subsidence
	Oceanic subsidence


	Backstrip
	Overview
	Running backstrip
	Example

	Backstrip output
	Amended drill site output
	Decompacted output

	Sea level variation
	Geohistory analysis

	Paleobathymetry
	Overview
	Running paleobathymetry
	Example

	Paleobathymetry output
	Paleobathymetry gridding procedure
	Builtin rift gridding procedure

	Reference
	Backtracking
	Summary
	Detail

	Backstripping
	Summary
	Detail

	Paleobathymetry
	Summary
	Detail

	Creating lithologies
	Summary
	Detail

	Decompacting well sites
	Reading and writing well files
	Summary
	Detail

	Compacted well
	Summary
	Detail

	Decompacted well
	Summary
	Detail


	Converting oceanic age to depth
	Summary
	Detail

	Continental rifting
	Summary
	Detail

	Dynamic topography
	Summary
	Detail

	Average sea level variations
	Summary
	Detail

	Converting stratigraphic depth to age
	Summary
	Detail

	Utilities
	Summary
	Detail

	Constants
	Bundle data
	Backtracking
	Backstripping
	Paleobathymetry
	Lithology
	Oceanic subsidence



	Indices and tables
	Index

